Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376454052> ?p ?o ?g. }
- W4376454052 endingPage "135" @default.
- W4376454052 startingPage "120" @default.
- W4376454052 abstract "Prognostics aims at determining whether a failure of an engineered system (e.g., a nuclear power plant) is impending and estimating the remaining useful life (RUL) before the failure occurs. The traditional data-driven prognostic approach is to construct multiple candidate algorithms using a training data set, evaluate their respective performance using a testing data set, and select the one with the best performance while discarding all the others. This approach has three shortcomings: (i) the selected standalone algorithm may not be robust; (ii) it wastes the resources for constructing the algorithms that are discarded; (iii) it requires the testing data in addition to the training data. To overcome these drawbacks, this paper proposes an ensemble data-driven prognostic approach which combines multiple member algorithms with a weighted-sum formulation. Three weighting schemes, namely the accuracy-based weighting, diversity-based weighting and optimization-based weighting, are proposed to determine the weights of member algorithms. The k-fold cross validation (CV) is employed to estimate the prediction error required by the weighting schemes. The results obtained from three case studies suggest that the ensemble approach with any weighting scheme gives more accurate RUL predictions compared to any sole algorithm when member algorithms producing diverse RUL predictions have comparable prediction accuracy and that the optimization-based weighting scheme gives the best overall performance among the three weighting schemes." @default.
- W4376454052 created "2023-05-14" @default.
- W4376454052 creator A5001024223 @default.
- W4376454052 creator A5034420112 @default.
- W4376454052 creator A5051380291 @default.
- W4376454052 creator A5084771659 @default.
- W4376454052 date "2012-07-01" @default.
- W4376454052 modified "2023-10-10" @default.
- W4376454052 title "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life" @default.
- W4376454052 cites W1964357740 @default.
- W4376454052 cites W1969559395 @default.
- W4376454052 cites W1978073390 @default.
- W4376454052 cites W1988790447 @default.
- W4376454052 cites W1995139460 @default.
- W4376454052 cites W2007725966 @default.
- W4376454052 cites W2009104157 @default.
- W4376454052 cites W2023716276 @default.
- W4376454052 cites W2038422906 @default.
- W4376454052 cites W2042112509 @default.
- W4376454052 cites W2047476236 @default.
- W4376454052 cites W2048231652 @default.
- W4376454052 cites W2054570131 @default.
- W4376454052 cites W2059313467 @default.
- W4376454052 cites W2075221061 @default.
- W4376454052 cites W2079166250 @default.
- W4376454052 cites W2083450550 @default.
- W4376454052 cites W2088990166 @default.
- W4376454052 cites W2097279435 @default.
- W4376454052 cites W2097794234 @default.
- W4376454052 cites W2098608159 @default.
- W4376454052 cites W2102732217 @default.
- W4376454052 cites W2109101264 @default.
- W4376454052 cites W2110007571 @default.
- W4376454052 cites W2110787940 @default.
- W4376454052 cites W2114751881 @default.
- W4376454052 cites W2119835964 @default.
- W4376454052 cites W2120058377 @default.
- W4376454052 cites W2120710794 @default.
- W4376454052 cites W2120841219 @default.
- W4376454052 cites W2124000105 @default.
- W4376454052 cites W2127342270 @default.
- W4376454052 cites W2140417752 @default.
- W4376454052 cites W2142608273 @default.
- W4376454052 cites W2149956719 @default.
- W4376454052 cites W2151017405 @default.
- W4376454052 cites W2152270473 @default.
- W4376454052 cites W2161535772 @default.
- W4376454052 cites W2911964244 @default.
- W4376454052 cites W3004732066 @default.
- W4376454052 cites W4212883601 @default.
- W4376454052 doi "https://doi.org/10.1016/j.ress.2012.03.008" @default.
- W4376454052 hasPublicationYear "2012" @default.
- W4376454052 type Work @default.
- W4376454052 citedByCount "162" @default.
- W4376454052 countsByYear W43764540522012 @default.
- W4376454052 countsByYear W43764540522013 @default.
- W4376454052 countsByYear W43764540522014 @default.
- W4376454052 countsByYear W43764540522015 @default.
- W4376454052 countsByYear W43764540522016 @default.
- W4376454052 countsByYear W43764540522017 @default.
- W4376454052 countsByYear W43764540522018 @default.
- W4376454052 countsByYear W43764540522019 @default.
- W4376454052 countsByYear W43764540522020 @default.
- W4376454052 countsByYear W43764540522021 @default.
- W4376454052 countsByYear W43764540522022 @default.
- W4376454052 countsByYear W43764540522023 @default.
- W4376454052 crossrefType "journal-article" @default.
- W4376454052 hasAuthorship W4376454052A5001024223 @default.
- W4376454052 hasAuthorship W4376454052A5034420112 @default.
- W4376454052 hasAuthorship W4376454052A5051380291 @default.
- W4376454052 hasAuthorship W4376454052A5084771659 @default.
- W4376454052 hasConcept C11413529 @default.
- W4376454052 hasConcept C124101348 @default.
- W4376454052 hasConcept C126838900 @default.
- W4376454052 hasConcept C129364497 @default.
- W4376454052 hasConcept C134306372 @default.
- W4376454052 hasConcept C154945302 @default.
- W4376454052 hasConcept C177264268 @default.
- W4376454052 hasConcept C183115368 @default.
- W4376454052 hasConcept C199360897 @default.
- W4376454052 hasConcept C33923547 @default.
- W4376454052 hasConcept C41008148 @default.
- W4376454052 hasConcept C58489278 @default.
- W4376454052 hasConcept C70136482 @default.
- W4376454052 hasConcept C71924100 @default.
- W4376454052 hasConcept C77618280 @default.
- W4376454052 hasConceptScore W4376454052C11413529 @default.
- W4376454052 hasConceptScore W4376454052C124101348 @default.
- W4376454052 hasConceptScore W4376454052C126838900 @default.
- W4376454052 hasConceptScore W4376454052C129364497 @default.
- W4376454052 hasConceptScore W4376454052C134306372 @default.
- W4376454052 hasConceptScore W4376454052C154945302 @default.
- W4376454052 hasConceptScore W4376454052C177264268 @default.
- W4376454052 hasConceptScore W4376454052C183115368 @default.
- W4376454052 hasConceptScore W4376454052C199360897 @default.
- W4376454052 hasConceptScore W4376454052C33923547 @default.
- W4376454052 hasConceptScore W4376454052C41008148 @default.
- W4376454052 hasConceptScore W4376454052C58489278 @default.