Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376454865> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4376454865 abstract "Computational medicine has emerged as a result of the advancement of medical technology, which has led to the emergence of the big data era in the biomedical area, which is supported by artificial intelligence technology. To advance the development of precision medicine, people must be able to extract the valuable information from this vast biomedical data. In the past, professionals in the field of feature engineering and domain knowledge were typically utilised to extract the features from the biological data using machine learning techniques, which took a lot of time and resources. Modern machine learning techniques like deep learning (DL) have an advantage over them in that they can automatically find strong, complex features from fresh data without the necessity for succeeding engineering. The study of DL's applications in the fields of genomics, drug development, electronic health records, and medical imaging suggests that deep learning has clear advantages in maximising the use of biomedical data. Deep learning is becoming increasingly important in the field of medicine and health due to its large range of potential applications. The lack of data, interpretability, data privacy, and heterogeneity are some of the limitations of deep learning in computational medical health. A resource for improving the use of deep learning in medical health is provided by the analysis and discussion of these difficulties." @default.
- W4376454865 created "2023-05-14" @default.
- W4376454865 creator A5006894005 @default.
- W4376454865 creator A5007377171 @default.
- W4376454865 creator A5018444791 @default.
- W4376454865 creator A5072261829 @default.
- W4376454865 creator A5078772039 @default.
- W4376454865 creator A5085123135 @default.
- W4376454865 creator A5087592553 @default.
- W4376454865 date "2023-02-22" @default.
- W4376454865 modified "2023-09-27" @default.
- W4376454865 title "Penetration of Deep Learning in Human Health Care and Pharmaceutical Industries; the Opportunities and Challenges" @default.
- W4376454865 doi "https://doi.org/10.1109/iciptm57143.2023.10118224" @default.
- W4376454865 hasPublicationYear "2023" @default.
- W4376454865 type Work @default.
- W4376454865 citedByCount "0" @default.
- W4376454865 crossrefType "proceedings-article" @default.
- W4376454865 hasAuthorship W4376454865A5006894005 @default.
- W4376454865 hasAuthorship W4376454865A5007377171 @default.
- W4376454865 hasAuthorship W4376454865A5018444791 @default.
- W4376454865 hasAuthorship W4376454865A5072261829 @default.
- W4376454865 hasAuthorship W4376454865A5078772039 @default.
- W4376454865 hasAuthorship W4376454865A5085123135 @default.
- W4376454865 hasAuthorship W4376454865A5087592553 @default.
- W4376454865 hasConcept C108583219 @default.
- W4376454865 hasConcept C119857082 @default.
- W4376454865 hasConcept C124101348 @default.
- W4376454865 hasConcept C134306372 @default.
- W4376454865 hasConcept C142724271 @default.
- W4376454865 hasConcept C154945302 @default.
- W4376454865 hasConcept C160735492 @default.
- W4376454865 hasConcept C162324750 @default.
- W4376454865 hasConcept C163763905 @default.
- W4376454865 hasConcept C202444582 @default.
- W4376454865 hasConcept C2522767166 @default.
- W4376454865 hasConcept C2778827112 @default.
- W4376454865 hasConcept C2781067378 @default.
- W4376454865 hasConcept C33923547 @default.
- W4376454865 hasConcept C36503486 @default.
- W4376454865 hasConcept C41008148 @default.
- W4376454865 hasConcept C50522688 @default.
- W4376454865 hasConcept C56739046 @default.
- W4376454865 hasConcept C71924100 @default.
- W4376454865 hasConcept C75684735 @default.
- W4376454865 hasConcept C9652623 @default.
- W4376454865 hasConceptScore W4376454865C108583219 @default.
- W4376454865 hasConceptScore W4376454865C119857082 @default.
- W4376454865 hasConceptScore W4376454865C124101348 @default.
- W4376454865 hasConceptScore W4376454865C134306372 @default.
- W4376454865 hasConceptScore W4376454865C142724271 @default.
- W4376454865 hasConceptScore W4376454865C154945302 @default.
- W4376454865 hasConceptScore W4376454865C160735492 @default.
- W4376454865 hasConceptScore W4376454865C162324750 @default.
- W4376454865 hasConceptScore W4376454865C163763905 @default.
- W4376454865 hasConceptScore W4376454865C202444582 @default.
- W4376454865 hasConceptScore W4376454865C2522767166 @default.
- W4376454865 hasConceptScore W4376454865C2778827112 @default.
- W4376454865 hasConceptScore W4376454865C2781067378 @default.
- W4376454865 hasConceptScore W4376454865C33923547 @default.
- W4376454865 hasConceptScore W4376454865C36503486 @default.
- W4376454865 hasConceptScore W4376454865C41008148 @default.
- W4376454865 hasConceptScore W4376454865C50522688 @default.
- W4376454865 hasConceptScore W4376454865C56739046 @default.
- W4376454865 hasConceptScore W4376454865C71924100 @default.
- W4376454865 hasConceptScore W4376454865C75684735 @default.
- W4376454865 hasConceptScore W4376454865C9652623 @default.
- W4376454865 hasLocation W43764548651 @default.
- W4376454865 hasOpenAccess W4376454865 @default.
- W4376454865 hasPrimaryLocation W43764548651 @default.
- W4376454865 hasRelatedWork W3006943036 @default.
- W4376454865 hasRelatedWork W3008173435 @default.
- W4376454865 hasRelatedWork W3014300295 @default.
- W4376454865 hasRelatedWork W3155404242 @default.
- W4376454865 hasRelatedWork W3189515467 @default.
- W4376454865 hasRelatedWork W3191046242 @default.
- W4376454865 hasRelatedWork W3208423683 @default.
- W4376454865 hasRelatedWork W4206493799 @default.
- W4376454865 hasRelatedWork W4213225422 @default.
- W4376454865 hasRelatedWork W4299487748 @default.
- W4376454865 isParatext "false" @default.
- W4376454865 isRetracted "false" @default.
- W4376454865 workType "article" @default.