Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376456874> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4376456874 endingPage "13" @default.
- W4376456874 startingPage "1" @default.
- W4376456874 abstract "Unbounded Petri nets (UPNs) can describe and analyze discrete event systems with infinite states (DESIS). Due to the infinite state space and the combination explosion problem, the reachability analysis of UPNs is an NP-Hard problem. The existing reachability analysis methods cannot achieve an accurate result at reasonable costs (computational time and space) due to the finite reachability tree with <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$omega$</tex-math> </inline-formula> -numbers. Based on the idea of approximating infinite space with finite states, given some limited reachable markings of a UPN, we propose a method that can quantitatively solve the UPN’s reachability problem with machine learning. Firstly, we define the probabilistic reachability of markings and transform the UPN’s reachability problem into the prediction problem of markings. The proposed method based on positive and unlabeled learning (PUL) and bagging trains a classifier to predict the probabilistic reachability of unknown markings. Finally, to predict the markings outside the positive sample set and unlabeled sample set, an iterative strategy is designed to update the classifier. Based on seven general UPNs, the results of the experiments show that the proposed method has a good performance in the accuracy and time consumption for the UPN’s reachability problem. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —In discrete event systems, the reachability problem mainly studies reachable states of the system and the relationship between states, which is the basis of the system’s states, behaviors, attributes and performance analysis. For discrete event systems with infinite states, it is hard to analyze the reachable relationship between states within a finite time due to the infinite state space and the combination explosion problem. The main motivation of the paper is to propose a method that can predict the reachable relationship between the states with a probability value within a finite time. By machine learning algorithms, the method learns the feature information of the known reachable states. The reachability of unknown states in the infinite state space can be predicted approximately. The proposed approximation method can be applied to analyze the reachability properties of general discrete event systems with infinite states, such as checking whether a fault occurs in operating systems, whether a message is delivered in communication and so on." @default.
- W4376456874 created "2023-05-14" @default.
- W4376456874 creator A5042753909 @default.
- W4376456874 creator A5060856903 @default.
- W4376456874 creator A5063698564 @default.
- W4376456874 creator A5066099338 @default.
- W4376456874 creator A5073907484 @default.
- W4376456874 date "2023-01-01" @default.
- W4376456874 modified "2023-10-16" @default.
- W4376456874 title "Probabilistic Reachability Prediction of Unbounded Petri Nets: A Machine Learning Method" @default.
- W4376456874 doi "https://doi.org/10.1109/tase.2023.3272983" @default.
- W4376456874 hasPublicationYear "2023" @default.
- W4376456874 type Work @default.
- W4376456874 citedByCount "0" @default.
- W4376456874 crossrefType "journal-article" @default.
- W4376456874 hasAuthorship W4376456874A5042753909 @default.
- W4376456874 hasAuthorship W4376456874A5060856903 @default.
- W4376456874 hasAuthorship W4376456874A5063698564 @default.
- W4376456874 hasAuthorship W4376456874A5066099338 @default.
- W4376456874 hasAuthorship W4376456874A5073907484 @default.
- W4376456874 hasConcept C11413529 @default.
- W4376456874 hasConcept C118615104 @default.
- W4376456874 hasConcept C136643341 @default.
- W4376456874 hasConcept C154945302 @default.
- W4376456874 hasConcept C197551870 @default.
- W4376456874 hasConcept C2777669093 @default.
- W4376456874 hasConcept C33923547 @default.
- W4376456874 hasConcept C38677869 @default.
- W4376456874 hasConcept C41008148 @default.
- W4376456874 hasConcept C49937458 @default.
- W4376456874 hasConcept C80444323 @default.
- W4376456874 hasConcept C95623464 @default.
- W4376456874 hasConceptScore W4376456874C11413529 @default.
- W4376456874 hasConceptScore W4376456874C118615104 @default.
- W4376456874 hasConceptScore W4376456874C136643341 @default.
- W4376456874 hasConceptScore W4376456874C154945302 @default.
- W4376456874 hasConceptScore W4376456874C197551870 @default.
- W4376456874 hasConceptScore W4376456874C2777669093 @default.
- W4376456874 hasConceptScore W4376456874C33923547 @default.
- W4376456874 hasConceptScore W4376456874C38677869 @default.
- W4376456874 hasConceptScore W4376456874C41008148 @default.
- W4376456874 hasConceptScore W4376456874C49937458 @default.
- W4376456874 hasConceptScore W4376456874C80444323 @default.
- W4376456874 hasConceptScore W4376456874C95623464 @default.
- W4376456874 hasFunder F4320335777 @default.
- W4376456874 hasLocation W43764568741 @default.
- W4376456874 hasOpenAccess W4376456874 @default.
- W4376456874 hasPrimaryLocation W43764568741 @default.
- W4376456874 hasRelatedWork W1500907979 @default.
- W4376456874 hasRelatedWork W1548212377 @default.
- W4376456874 hasRelatedWork W2016151994 @default.
- W4376456874 hasRelatedWork W2148229336 @default.
- W4376456874 hasRelatedWork W2276955912 @default.
- W4376456874 hasRelatedWork W2341552178 @default.
- W4376456874 hasRelatedWork W2390424213 @default.
- W4376456874 hasRelatedWork W2522627362 @default.
- W4376456874 hasRelatedWork W2890208214 @default.
- W4376456874 hasRelatedWork W2993657370 @default.
- W4376456874 isParatext "false" @default.
- W4376456874 isRetracted "false" @default.
- W4376456874 workType "article" @default.