Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376470873> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4376470873 endingPage "90" @default.
- W4376470873 startingPage "85" @default.
- W4376470873 abstract "Abstract In a previous chapter, we have constructed a particular Riemannian covering realising a wreath product. In this chapter, we first return to that example and use class field theory for Riemannian coverings (à la Sunada) to study the behaviour of geodesic in such covers. We then relate, in the general case, homological wideness of a group G acting on a manifold M (i.e., the question whether the first homology of M contains the regular representation of G ) to the existence of geodesics with certain splitting behaviour. In exact analogy to an classical argument in analytic number theory, we use the Ruelle zeta function to show the existence of infinitely many totally split geodesics for a given covering in the negative curvature case. Finally, the analogy with class field theory allows us to study an analogue of homological wideness in the theory of extensions of number fields." @default.
- W4376470873 created "2023-05-14" @default.
- W4376470873 creator A5044563946 @default.
- W4376470873 creator A5067986221 @default.
- W4376470873 date "2023-01-01" @default.
- W4376470873 modified "2023-09-25" @default.
- W4376470873 title "Homological Wideness, “Class Field Theory” for Covers, and a Number Theoretical Analogue" @default.
- W4376470873 cites W1967299338 @default.
- W4376470873 cites W1989214109 @default.
- W4376470873 cites W1999110501 @default.
- W4376470873 cites W2066832697 @default.
- W4376470873 cites W2626328754 @default.
- W4376470873 cites W4246032049 @default.
- W4376470873 doi "https://doi.org/10.1007/978-3-031-27704-7_10" @default.
- W4376470873 hasPublicationYear "2023" @default.
- W4376470873 type Work @default.
- W4376470873 citedByCount "0" @default.
- W4376470873 crossrefType "book-chapter" @default.
- W4376470873 hasAuthorship W4376470873A5044563946 @default.
- W4376470873 hasAuthorship W4376470873A5067986221 @default.
- W4376470873 hasBestOaLocation W43764708731 @default.
- W4376470873 hasConcept C111472728 @default.
- W4376470873 hasConcept C134306372 @default.
- W4376470873 hasConcept C136119220 @default.
- W4376470873 hasConcept C138885662 @default.
- W4376470873 hasConcept C165818556 @default.
- W4376470873 hasConcept C202444582 @default.
- W4376470873 hasConcept C2777212361 @default.
- W4376470873 hasConcept C33923547 @default.
- W4376470873 hasConcept C521332185 @default.
- W4376470873 hasConcept C9652623 @default.
- W4376470873 hasConceptScore W4376470873C111472728 @default.
- W4376470873 hasConceptScore W4376470873C134306372 @default.
- W4376470873 hasConceptScore W4376470873C136119220 @default.
- W4376470873 hasConceptScore W4376470873C138885662 @default.
- W4376470873 hasConceptScore W4376470873C165818556 @default.
- W4376470873 hasConceptScore W4376470873C202444582 @default.
- W4376470873 hasConceptScore W4376470873C2777212361 @default.
- W4376470873 hasConceptScore W4376470873C33923547 @default.
- W4376470873 hasConceptScore W4376470873C521332185 @default.
- W4376470873 hasConceptScore W4376470873C9652623 @default.
- W4376470873 hasLocation W43764708731 @default.
- W4376470873 hasOpenAccess W4376470873 @default.
- W4376470873 hasPrimaryLocation W43764708731 @default.
- W4376470873 hasRelatedWork W1560139384 @default.
- W4376470873 hasRelatedWork W1974584795 @default.
- W4376470873 hasRelatedWork W2007735529 @default.
- W4376470873 hasRelatedWork W2071383071 @default.
- W4376470873 hasRelatedWork W2078299291 @default.
- W4376470873 hasRelatedWork W2096753949 @default.
- W4376470873 hasRelatedWork W2973062610 @default.
- W4376470873 hasRelatedWork W2998142867 @default.
- W4376470873 hasRelatedWork W3111121251 @default.
- W4376470873 hasRelatedWork W4249580765 @default.
- W4376470873 isParatext "false" @default.
- W4376470873 isRetracted "false" @default.
- W4376470873 workType "book-chapter" @default.