Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376480418> ?p ?o ?g. }
- W4376480418 endingPage "49139" @default.
- W4376480418 startingPage "49114" @default.
- W4376480418 abstract "Cyberattacks represent an ever-growing threat that has become a real priority for most organizations. Attackers use sophisticated attack scenarios to deceive defense systems in order to access private data or cause harm. Machine Learning (ML) and Deep Learning (DL) have demonstrate impressive results for detecting cyberattacks due to their ability to learn generalizable patterns from flat data. However, flat data fail to capture the structural behavior of attacks, which is essential for effective detection. Contrarily, graph structures provide a more robust and abstract view of a system that is difficult for attackers to evade. Recently, Graph Neural Networks (GNNs) have become successful in learning useful representations from the semantic provided by graph-structured data. Intrusions have been detected for years using graphs such as network flow graphs or provenance graphs, and learning representations from these structures can help models understand the structural patterns of attacks, in addition to traditional features. In this survey, we focus on the applications of graph representation learning to the detection of network-based and host-based intrusions, with special attention to GNN methods. For both network and host levels, we present the graph data structures that can be leveraged and we comprehensively review the state-of-the-art papers along with the used datasets. Our analysis reveals that GNNs are particularly efficient in cybersecurity, since they can learn effective representations without requiring any external domain knowledge. We also evaluate the robustness of these techniques based on adversarial attacks. Finally, we discuss the strengths and weaknesses of GNN-based intrusion detection and identify future research directions." @default.
- W4376480418 created "2023-05-14" @default.
- W4376480418 creator A5018045275 @default.
- W4376480418 creator A5033147328 @default.
- W4376480418 creator A5041418831 @default.
- W4376480418 creator A5043476031 @default.
- W4376480418 date "2023-01-01" @default.
- W4376480418 modified "2023-09-25" @default.
- W4376480418 title "Graph Neural Networks for Intrusion Detection: A Survey" @default.
- W4376480418 cites W1501856433 @default.
- W4376480418 cites W1991210879 @default.
- W4376480418 cites W2009232481 @default.
- W4376480418 cites W2021963610 @default.
- W4376480418 cites W2026258420 @default.
- W4376480418 cites W2031163547 @default.
- W4376480418 cites W2064675550 @default.
- W4376480418 cites W2077488147 @default.
- W4376480418 cites W2093882311 @default.
- W4376480418 cites W2097101695 @default.
- W4376480418 cites W2116341502 @default.
- W4376480418 cites W2136922672 @default.
- W4376480418 cites W2167240430 @default.
- W4376480418 cites W2170646878 @default.
- W4376480418 cites W2284900416 @default.
- W4376480418 cites W2294333398 @default.
- W4376480418 cites W2296509296 @default.
- W4376480418 cites W2476891002 @default.
- W4376480418 cites W2604314403 @default.
- W4376480418 cites W2743104969 @default.
- W4376480418 cites W2767094836 @default.
- W4376480418 cites W2789828921 @default.
- W4376480418 cites W2800695847 @default.
- W4376480418 cites W2807786182 @default.
- W4376480418 cites W2843523788 @default.
- W4376480418 cites W2887955655 @default.
- W4376480418 cites W2906943923 @default.
- W4376480418 cites W2911286998 @default.
- W4376480418 cites W2914999862 @default.
- W4376480418 cites W2962756421 @default.
- W4376480418 cites W2962963847 @default.
- W4376480418 cites W2963748489 @default.
- W4376480418 cites W2969696968 @default.
- W4376480418 cites W2980576170 @default.
- W4376480418 cites W2986944522 @default.
- W4376480418 cites W2990045899 @default.
- W4376480418 cites W2990908872 @default.
- W4376480418 cites W2991408690 @default.
- W4376480418 cites W2996806689 @default.
- W4376480418 cites W3005127313 @default.
- W4376480418 cites W3006711782 @default.
- W4376480418 cites W3033091443 @default.
- W4376480418 cites W3036484052 @default.
- W4376480418 cites W3102359135 @default.
- W4376480418 cites W3103557498 @default.
- W4376480418 cites W3104097132 @default.
- W4376480418 cites W3105780912 @default.
- W4376480418 cites W3115798218 @default.
- W4376480418 cites W3123893801 @default.
- W4376480418 cites W3126165507 @default.
- W4376480418 cites W3130138053 @default.
- W4376480418 cites W3136205675 @default.
- W4376480418 cites W3158906645 @default.
- W4376480418 cites W3162956350 @default.
- W4376480418 cites W3176065393 @default.
- W4376480418 cites W3191490876 @default.
- W4376480418 cites W3198565628 @default.
- W4376480418 cites W3198703695 @default.
- W4376480418 cites W3200780444 @default.
- W4376480418 cites W3206617323 @default.
- W4376480418 cites W3208773001 @default.
- W4376480418 cites W3211430557 @default.
- W4376480418 cites W3211805421 @default.
- W4376480418 cites W3212868562 @default.
- W4376480418 cites W3216267479 @default.
- W4376480418 cites W3217748719 @default.
- W4376480418 cites W4200107777 @default.
- W4376480418 cites W4200304719 @default.
- W4376480418 cites W4205275566 @default.
- W4376480418 cites W4210803071 @default.
- W4376480418 cites W4281385944 @default.
- W4376480418 cites W4281617842 @default.
- W4376480418 cites W4282963615 @default.
- W4376480418 cites W4285157251 @default.
- W4376480418 cites W4285596339 @default.
- W4376480418 cites W4296899769 @default.
- W4376480418 cites W4304820095 @default.
- W4376480418 cites W4306317402 @default.
- W4376480418 cites W4307042912 @default.
- W4376480418 cites W4311703141 @default.
- W4376480418 cites W4312676126 @default.
- W4376480418 cites W4312948208 @default.
- W4376480418 cites W4313889327 @default.
- W4376480418 cites W4320024068 @default.
- W4376480418 cites W4360851419 @default.
- W4376480418 doi "https://doi.org/10.1109/access.2023.3275789" @default.
- W4376480418 hasPublicationYear "2023" @default.
- W4376480418 type Work @default.
- W4376480418 citedByCount "0" @default.