Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376491330> ?p ?o ?g. }
- W4376491330 endingPage "1834" @default.
- W4376491330 startingPage "1834" @default.
- W4376491330 abstract "Krawtchouk polynomials (KPs) are discrete orthogonal polynomials associated with the Gauss hypergeometric functions. These polynomials and their generated moments in 1D or 2D formats play an important role in information and coding theories, signal and image processing tools, image watermarking, and pattern recognition. In this paper, we introduce a new four-term recurrence relation to compute KPs compared to their ordinary recursions (three-term) and analyse the proposed algorithm speed. Moreover, we use Clenshaw’s technique to accelerate the computation procedure of the Krawtchouk moments (KMs) using a fast digital filter structure to generate a lattice network for KPs calculation. The proposed method confirms the stability of KPs computation for higher orders and their signal reconstruction capabilities as well. The results show that the KMs calculation using the proposed combined method based on a four-term recursion and Clenshaw’s technique is reliable and fast compared to the existing recursions and fast KMs algorithms." @default.
- W4376491330 created "2023-05-14" @default.
- W4376491330 creator A5008997666 @default.
- W4376491330 creator A5029727932 @default.
- W4376491330 date "2023-04-12" @default.
- W4376491330 modified "2023-10-18" @default.
- W4376491330 title "Four-Term Recurrence for Fast Krawtchouk Moments Using Clenshaw Algorithm" @default.
- W4376491330 cites W1244770280 @default.
- W4376491330 cites W1975186435 @default.
- W4376491330 cites W2002825054 @default.
- W4376491330 cites W2008150312 @default.
- W4376491330 cites W2042837980 @default.
- W4376491330 cites W2045010718 @default.
- W4376491330 cites W2054101211 @default.
- W4376491330 cites W2055755574 @default.
- W4376491330 cites W2059176986 @default.
- W4376491330 cites W2062777718 @default.
- W4376491330 cites W2063600526 @default.
- W4376491330 cites W2073451745 @default.
- W4376491330 cites W2093332696 @default.
- W4376491330 cites W2095337928 @default.
- W4376491330 cites W2098531078 @default.
- W4376491330 cites W2099205439 @default.
- W4376491330 cites W2102238397 @default.
- W4376491330 cites W2102947781 @default.
- W4376491330 cites W2107779085 @default.
- W4376491330 cites W2124041826 @default.
- W4376491330 cites W2132050597 @default.
- W4376491330 cites W2135331233 @default.
- W4376491330 cites W2148410999 @default.
- W4376491330 cites W2148941711 @default.
- W4376491330 cites W2153118043 @default.
- W4376491330 cites W2162977486 @default.
- W4376491330 cites W2462409828 @default.
- W4376491330 cites W2546239211 @default.
- W4376491330 cites W2753977426 @default.
- W4376491330 cites W2760241808 @default.
- W4376491330 cites W2770549268 @default.
- W4376491330 cites W2782801325 @default.
- W4376491330 cites W2789294176 @default.
- W4376491330 cites W2885513659 @default.
- W4376491330 cites W2915222188 @default.
- W4376491330 cites W2943594752 @default.
- W4376491330 cites W2958574851 @default.
- W4376491330 cites W2963996616 @default.
- W4376491330 cites W3006002926 @default.
- W4376491330 cites W3007452488 @default.
- W4376491330 cites W3007917914 @default.
- W4376491330 cites W3040590284 @default.
- W4376491330 cites W3048473530 @default.
- W4376491330 cites W3093723880 @default.
- W4376491330 cites W3136074963 @default.
- W4376491330 cites W3158842678 @default.
- W4376491330 cites W3161337585 @default.
- W4376491330 cites W3172851903 @default.
- W4376491330 cites W3197571222 @default.
- W4376491330 cites W4294930496 @default.
- W4376491330 doi "https://doi.org/10.3390/electronics12081834" @default.
- W4376491330 hasPublicationYear "2023" @default.
- W4376491330 type Work @default.
- W4376491330 citedByCount "2" @default.
- W4376491330 countsByYear W43764913302023 @default.
- W4376491330 crossrefType "journal-article" @default.
- W4376491330 hasAuthorship W4376491330A5008997666 @default.
- W4376491330 hasAuthorship W4376491330A5029727932 @default.
- W4376491330 hasBestOaLocation W43764913301 @default.
- W4376491330 hasConcept C10628310 @default.
- W4376491330 hasConcept C11413529 @default.
- W4376491330 hasConcept C118797610 @default.
- W4376491330 hasConcept C121332964 @default.
- W4376491330 hasConcept C134306372 @default.
- W4376491330 hasConcept C168773036 @default.
- W4376491330 hasConcept C201292218 @default.
- W4376491330 hasConcept C202444582 @default.
- W4376491330 hasConcept C28826006 @default.
- W4376491330 hasConcept C33923547 @default.
- W4376491330 hasConcept C41008148 @default.
- W4376491330 hasConcept C43176163 @default.
- W4376491330 hasConcept C45374587 @default.
- W4376491330 hasConcept C52537462 @default.
- W4376491330 hasConcept C61797465 @default.
- W4376491330 hasConcept C62520636 @default.
- W4376491330 hasConceptScore W4376491330C10628310 @default.
- W4376491330 hasConceptScore W4376491330C11413529 @default.
- W4376491330 hasConceptScore W4376491330C118797610 @default.
- W4376491330 hasConceptScore W4376491330C121332964 @default.
- W4376491330 hasConceptScore W4376491330C134306372 @default.
- W4376491330 hasConceptScore W4376491330C168773036 @default.
- W4376491330 hasConceptScore W4376491330C201292218 @default.
- W4376491330 hasConceptScore W4376491330C202444582 @default.
- W4376491330 hasConceptScore W4376491330C28826006 @default.
- W4376491330 hasConceptScore W4376491330C33923547 @default.
- W4376491330 hasConceptScore W4376491330C41008148 @default.
- W4376491330 hasConceptScore W4376491330C43176163 @default.
- W4376491330 hasConceptScore W4376491330C45374587 @default.
- W4376491330 hasConceptScore W4376491330C52537462 @default.
- W4376491330 hasConceptScore W4376491330C61797465 @default.
- W4376491330 hasConceptScore W4376491330C62520636 @default.