Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376504465> ?p ?o ?g. }
- W4376504465 endingPage "095765092311746" @default.
- W4376504465 startingPage "095765092311746" @default.
- W4376504465 abstract "The goal of this review is to examine the current state of the art in nucleate pool boiling heat transfer in a variety of different fluids. The review is divided into many sections that discuss heat transfer in pool boiling, such as pool boiling of nanofluids, boiling behavior of water–glycerin combinations, and operational parameters. With the appropriate mixes of hydrocarbons and other commercial liquids, higher heat transfer coefficients may be produced. Coatings of nanoparticles with varying layer thicknesses applied to the heater surface may be optimized to improve heat transfer from the pool to the surrounding water. The heat transfer hypothesis elucidates the peculiarities of each pool’s boiling regime. It is also possible to expand it to flow boiling by combining pool boiling liquid motion with external mechanical force. Other phase transitions, such as condensation, solidification, and melting, can also be described using boiling heat flow processes. Pool boiling performance can be improved by making a variety of adjustments to the heating surfaces as well as by using pure liquids in the water. Improvements can be made to boiling parameters such as the heat flux, the critical heat flux, the heat transfer coefficient, bubble development and departure, and so forth. A nanoparticle addition to a pure liquid or a surface coating on a heating surface can improve heat transfer and boiling properties by increasing the surface area of the liquid. Pool boiling critical heat flux was enhanced with Al 2 O 3 -water nano fluid. Authors used three different powder sizes of Al 2 O 3 which were 0.05, 0.3 and 1.0 μm. Addition of alumina particle in water increases the boiling heat flux. Critical heat flux (CHF) was significantly enhanced using Titania and Alumina nano particles in water as compared to pure water. Average size of nano particle used was 85 nm measured by scattering electron microscope. Enhancement in Critical heat flux is due to nano particle coating on heating surface. Characteristics of nucleate boiling are greatly affected by the operating pressure. Miniature flat heat pipe (MFHP) with evaporator having micro grooved heat transfer surface gives 50% increment in critical heat flux at atmosphere pressure whereas this value increases up to 150% at 7.4 kPa pressure. The addition of CNT (carbon nanotube) to the base liquid increases the critical heat flux. Transmission electron microscopy confirms the average size of a nanoparticle as 15 nm. Authors found that by decreasing pressure from atmosphere condition critical heat flux increases to 200% with CNT/water nano fluid as compared to deionized water. SiC-water nanofluids of 100 nm size were experimented with at volume concentrations of 0.001%, 0.001%, and 0.01%. The size of the nanoparticle was confirmed by a scattering electron microscope. Authors concluded that at 0.01% of nano particle enhances critical heat flux to 105%." @default.
- W4376504465 created "2023-05-15" @default.
- W4376504465 creator A5002149409 @default.
- W4376504465 creator A5004834417 @default.
- W4376504465 creator A5091941429 @default.
- W4376504465 creator A5091941430 @default.
- W4376504465 date "2023-05-13" @default.
- W4376504465 modified "2023-09-25" @default.
- W4376504465 title "A review of nucleate pool-boiling heat transfer in different liquids and nanofluids" @default.
- W4376504465 cites W1483663221 @default.
- W4376504465 cites W179798410 @default.
- W4376504465 cites W1964614390 @default.
- W4376504465 cites W1965394298 @default.
- W4376504465 cites W1967730741 @default.
- W4376504465 cites W1968465796 @default.
- W4376504465 cites W1969804696 @default.
- W4376504465 cites W1970988621 @default.
- W4376504465 cites W1972442057 @default.
- W4376504465 cites W1980086058 @default.
- W4376504465 cites W1981196358 @default.
- W4376504465 cites W1985877704 @default.
- W4376504465 cites W1988550713 @default.
- W4376504465 cites W1992311593 @default.
- W4376504465 cites W2002161258 @default.
- W4376504465 cites W2009622906 @default.
- W4376504465 cites W2010978229 @default.
- W4376504465 cites W2015037297 @default.
- W4376504465 cites W2015495084 @default.
- W4376504465 cites W2015938309 @default.
- W4376504465 cites W2021168424 @default.
- W4376504465 cites W2021668882 @default.
- W4376504465 cites W2024132802 @default.
- W4376504465 cites W2024446309 @default.
- W4376504465 cites W2027331702 @default.
- W4376504465 cites W2027772802 @default.
- W4376504465 cites W2029993280 @default.
- W4376504465 cites W2037881684 @default.
- W4376504465 cites W2038493126 @default.
- W4376504465 cites W2038704626 @default.
- W4376504465 cites W2043212495 @default.
- W4376504465 cites W2044678730 @default.
- W4376504465 cites W2045902160 @default.
- W4376504465 cites W2059188646 @default.
- W4376504465 cites W2059715052 @default.
- W4376504465 cites W2060817591 @default.
- W4376504465 cites W2062490652 @default.
- W4376504465 cites W2068068154 @default.
- W4376504465 cites W2070308260 @default.
- W4376504465 cites W2070429817 @default.
- W4376504465 cites W2072327064 @default.
- W4376504465 cites W2072757078 @default.
- W4376504465 cites W2076395009 @default.
- W4376504465 cites W2078377946 @default.
- W4376504465 cites W2079489327 @default.
- W4376504465 cites W2080011810 @default.
- W4376504465 cites W2083342863 @default.
- W4376504465 cites W2083709224 @default.
- W4376504465 cites W2098386900 @default.
- W4376504465 cites W2099580356 @default.
- W4376504465 cites W2111138281 @default.
- W4376504465 cites W2140440676 @default.
- W4376504465 cites W2151426024 @default.
- W4376504465 cites W2170949406 @default.
- W4376504465 cites W2221766800 @default.
- W4376504465 cites W2399616712 @default.
- W4376504465 cites W2519999590 @default.
- W4376504465 cites W2555133079 @default.
- W4376504465 cites W2802864122 @default.
- W4376504465 cites W2920635610 @default.
- W4376504465 cites W2945393789 @default.
- W4376504465 cites W2946120062 @default.
- W4376504465 cites W2946809495 @default.
- W4376504465 cites W2965509369 @default.
- W4376504465 cites W2996191685 @default.
- W4376504465 cites W3036253606 @default.
- W4376504465 cites W3128701677 @default.
- W4376504465 cites W3137972525 @default.
- W4376504465 cites W4226237092 @default.
- W4376504465 cites W4290267450 @default.
- W4376504465 cites W4294307928 @default.
- W4376504465 cites W4295725792 @default.
- W4376504465 cites W4308024197 @default.
- W4376504465 cites W2599593657 @default.
- W4376504465 doi "https://doi.org/10.1177/09576509231174692" @default.
- W4376504465 hasPublicationYear "2023" @default.
- W4376504465 type Work @default.
- W4376504465 citedByCount "0" @default.
- W4376504465 crossrefType "journal-article" @default.
- W4376504465 hasAuthorship W4376504465A5002149409 @default.
- W4376504465 hasAuthorship W4376504465A5004834417 @default.
- W4376504465 hasAuthorship W4376504465A5091941429 @default.
- W4376504465 hasAuthorship W4376504465A5091941430 @default.
- W4376504465 hasConcept C121332964 @default.
- W4376504465 hasConcept C157777378 @default.
- W4376504465 hasConcept C159188206 @default.
- W4376504465 hasConcept C167131557 @default.
- W4376504465 hasConcept C192562407 @default.
- W4376504465 hasConcept C197194406 @default.