Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376507185> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4376507185 endingPage "2369" @default.
- W4376507185 startingPage "2359" @default.
- W4376507185 abstract "Multi-modal brain networks characterize the complex connectivities among different brain regions from structure and function aspects, which have been widely used in the analysis of brain diseases. Although many multi-modal brain network fusion methods have been proposed, most of them are unable to effectively extract the spatio-temporal topological characteristics of brain network while fusing different modalities. In this paper, we develop an adaptive multi-channel graph convolution network (GCN) fusion framework with graph contrast learning, which not only can effectively mine both the complementary and discriminative features of multi-modal brain networks, but also capture the dynamic characteristics and the topological structure of brain networks. Specifically, we first divide ROI-based series signals into multiple overlapping time windows, and construct the dynamic brain network representation based on these windows. Second, we adopt adaptive multi-channel GCN to extract the spatial features of the multi-modal brain networks with contrastive constraints, including multi-modal fusion InfoMax and inter-channel InfoMin. These two constraints are designed to extract the complementary information among modalities and specific information within a single modality. Moreover, two stacked long short-term memory units are utilized to capture the temporal information transferring across time windows. Finally, the extracted spatio-temporal features are fused, and multilayer perceptron (MLP) is used to realize multi-modal brain network prediction. The experiment on the epilepsy dataset shows that the proposed method outperforms several state-of-the-art methods in the diagnosis of brain diseases." @default.
- W4376507185 created "2023-05-15" @default.
- W4376507185 creator A5018821033 @default.
- W4376507185 creator A5037290686 @default.
- W4376507185 creator A5045175709 @default.
- W4376507185 creator A5060964730 @default.
- W4376507185 creator A5069273969 @default.
- W4376507185 creator A5076674630 @default.
- W4376507185 date "2023-01-01" @default.
- W4376507185 modified "2023-10-16" @default.
- W4376507185 title "MSTGC: Multi-Channel Spatio-Temporal Graph Convolution Network for Multi-Modal Brain Networks Fusion" @default.
- W4376507185 cites W1558448135 @default.
- W4376507185 cites W1907418661 @default.
- W4376507185 cites W1977715475 @default.
- W4376507185 cites W1999653836 @default.
- W4376507185 cites W1999816351 @default.
- W4376507185 cites W2064675550 @default.
- W4376507185 cites W2121765190 @default.
- W4376507185 cites W2141200867 @default.
- W4376507185 cites W2156295356 @default.
- W4376507185 cites W2502203196 @default.
- W4376507185 cites W2526511911 @default.
- W4376507185 cites W2583114732 @default.
- W4376507185 cites W2588788365 @default.
- W4376507185 cites W2725237741 @default.
- W4376507185 cites W2779020697 @default.
- W4376507185 cites W2889325467 @default.
- W4376507185 cites W2979583482 @default.
- W4376507185 cites W2980048320 @default.
- W4376507185 cites W3005600289 @default.
- W4376507185 cites W3006750212 @default.
- W4376507185 cites W3035206316 @default.
- W4376507185 cites W3090524777 @default.
- W4376507185 cites W3090902835 @default.
- W4376507185 cites W3091271707 @default.
- W4376507185 cites W3108655343 @default.
- W4376507185 cites W3178444448 @default.
- W4376507185 doi "https://doi.org/10.1109/tnsre.2023.3275608" @default.
- W4376507185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37171928" @default.
- W4376507185 hasPublicationYear "2023" @default.
- W4376507185 type Work @default.
- W4376507185 citedByCount "0" @default.
- W4376507185 crossrefType "journal-article" @default.
- W4376507185 hasAuthorship W4376507185A5018821033 @default.
- W4376507185 hasAuthorship W4376507185A5037290686 @default.
- W4376507185 hasAuthorship W4376507185A5045175709 @default.
- W4376507185 hasAuthorship W4376507185A5060964730 @default.
- W4376507185 hasAuthorship W4376507185A5069273969 @default.
- W4376507185 hasAuthorship W4376507185A5076674630 @default.
- W4376507185 hasBestOaLocation W43765071851 @default.
- W4376507185 hasConcept C119857082 @default.
- W4376507185 hasConcept C132525143 @default.
- W4376507185 hasConcept C153180895 @default.
- W4376507185 hasConcept C154945302 @default.
- W4376507185 hasConcept C185592680 @default.
- W4376507185 hasConcept C188027245 @default.
- W4376507185 hasConcept C41008148 @default.
- W4376507185 hasConcept C71139939 @default.
- W4376507185 hasConcept C80444323 @default.
- W4376507185 hasConcept C97931131 @default.
- W4376507185 hasConceptScore W4376507185C119857082 @default.
- W4376507185 hasConceptScore W4376507185C132525143 @default.
- W4376507185 hasConceptScore W4376507185C153180895 @default.
- W4376507185 hasConceptScore W4376507185C154945302 @default.
- W4376507185 hasConceptScore W4376507185C185592680 @default.
- W4376507185 hasConceptScore W4376507185C188027245 @default.
- W4376507185 hasConceptScore W4376507185C41008148 @default.
- W4376507185 hasConceptScore W4376507185C71139939 @default.
- W4376507185 hasConceptScore W4376507185C80444323 @default.
- W4376507185 hasConceptScore W4376507185C97931131 @default.
- W4376507185 hasFunder F4320321001 @default.
- W4376507185 hasFunder F4320322769 @default.
- W4376507185 hasFunder F4320335777 @default.
- W4376507185 hasLocation W43765071851 @default.
- W4376507185 hasLocation W43765071852 @default.
- W4376507185 hasOpenAccess W4376507185 @default.
- W4376507185 hasPrimaryLocation W43765071851 @default.
- W4376507185 hasRelatedWork W1652783584 @default.
- W4376507185 hasRelatedWork W1990254706 @default.
- W4376507185 hasRelatedWork W2024160000 @default.
- W4376507185 hasRelatedWork W2061273563 @default.
- W4376507185 hasRelatedWork W2285052147 @default.
- W4376507185 hasRelatedWork W2729514902 @default.
- W4376507185 hasRelatedWork W2743258233 @default.
- W4376507185 hasRelatedWork W2773500201 @default.
- W4376507185 hasRelatedWork W2998168123 @default.
- W4376507185 hasRelatedWork W4287995534 @default.
- W4376507185 hasVolume "31" @default.
- W4376507185 isParatext "false" @default.
- W4376507185 isRetracted "false" @default.
- W4376507185 workType "article" @default.