Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376564214> ?p ?o ?g. }
- W4376564214 abstract "Abstract To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transfer‐learning methodology and a multilabel convolutional neural network for COVID (MLCNN‐COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer‐learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN‐COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three‐dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN‐COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer‐learning model's performance. It shows that three‐dimensional conformers adequately identify negative COVID medicine responses." @default.
- W4376564214 created "2023-05-16" @default.
- W4376564214 creator A5075818819 @default.
- W4376564214 creator A5078520681 @default.
- W4376564214 date "2023-05-14" @default.
- W4376564214 modified "2023-10-18" @default.
- W4376564214 title "MLCNN‐COV: A multilabel convolutional neural network‐based framework to identify negative COVID medicine responses from the chemical three‐dimensional conformer" @default.
- W4376564214 cites W177032395 @default.
- W4376564214 cites W1966454287 @default.
- W4376564214 cites W1980409763 @default.
- W4376564214 cites W2008948524 @default.
- W4376564214 cites W2051730284 @default.
- W4376564214 cites W2145827727 @default.
- W4376564214 cites W2169546341 @default.
- W4376564214 cites W2234451305 @default.
- W4376564214 cites W2247448379 @default.
- W4376564214 cites W2604539562 @default.
- W4376564214 cites W2897753544 @default.
- W4376564214 cites W2899070097 @default.
- W4376564214 cites W2914252392 @default.
- W4376564214 cites W2947083459 @default.
- W4376564214 cites W2994625500 @default.
- W4376564214 cites W3011047101 @default.
- W4376564214 cites W3019998044 @default.
- W4376564214 cites W3035943921 @default.
- W4376564214 cites W3041136844 @default.
- W4376564214 cites W3090868364 @default.
- W4376564214 cites W3127263195 @default.
- W4376564214 cites W3138822839 @default.
- W4376564214 cites W3141661204 @default.
- W4376564214 cites W3157302753 @default.
- W4376564214 cites W3164415613 @default.
- W4376564214 cites W3185704687 @default.
- W4376564214 cites W3190616317 @default.
- W4376564214 cites W3193713472 @default.
- W4376564214 cites W3197899136 @default.
- W4376564214 cites W3205174543 @default.
- W4376564214 cites W3205993471 @default.
- W4376564214 cites W3211369467 @default.
- W4376564214 cites W4205603649 @default.
- W4376564214 cites W4210801526 @default.
- W4376564214 cites W4224981153 @default.
- W4376564214 cites W4225271061 @default.
- W4376564214 cites W4226445735 @default.
- W4376564214 cites W4280532674 @default.
- W4376564214 cites W4291722303 @default.
- W4376564214 cites W4306831003 @default.
- W4376564214 cites W4306955485 @default.
- W4376564214 cites W4310264537 @default.
- W4376564214 doi "https://doi.org/10.4218/etrij.2022-0339" @default.
- W4376564214 hasPublicationYear "2023" @default.
- W4376564214 type Work @default.
- W4376564214 citedByCount "0" @default.
- W4376564214 crossrefType "journal-article" @default.
- W4376564214 hasAuthorship W4376564214A5075818819 @default.
- W4376564214 hasAuthorship W4376564214A5078520681 @default.
- W4376564214 hasBestOaLocation W43765642141 @default.
- W4376564214 hasConcept C108583219 @default.
- W4376564214 hasConcept C111919701 @default.
- W4376564214 hasConcept C115961682 @default.
- W4376564214 hasConcept C119857082 @default.
- W4376564214 hasConcept C138885662 @default.
- W4376564214 hasConcept C142724271 @default.
- W4376564214 hasConcept C150899416 @default.
- W4376564214 hasConcept C153180895 @default.
- W4376564214 hasConcept C154945302 @default.
- W4376564214 hasConcept C2776401178 @default.
- W4376564214 hasConcept C2779134260 @default.
- W4376564214 hasConcept C3007834351 @default.
- W4376564214 hasConcept C3008058167 @default.
- W4376564214 hasConcept C41008148 @default.
- W4376564214 hasConcept C41895202 @default.
- W4376564214 hasConcept C50644808 @default.
- W4376564214 hasConcept C524204448 @default.
- W4376564214 hasConcept C71924100 @default.
- W4376564214 hasConcept C81363708 @default.
- W4376564214 hasConcept C89623803 @default.
- W4376564214 hasConcept C98045186 @default.
- W4376564214 hasConceptScore W4376564214C108583219 @default.
- W4376564214 hasConceptScore W4376564214C111919701 @default.
- W4376564214 hasConceptScore W4376564214C115961682 @default.
- W4376564214 hasConceptScore W4376564214C119857082 @default.
- W4376564214 hasConceptScore W4376564214C138885662 @default.
- W4376564214 hasConceptScore W4376564214C142724271 @default.
- W4376564214 hasConceptScore W4376564214C150899416 @default.
- W4376564214 hasConceptScore W4376564214C153180895 @default.
- W4376564214 hasConceptScore W4376564214C154945302 @default.
- W4376564214 hasConceptScore W4376564214C2776401178 @default.
- W4376564214 hasConceptScore W4376564214C2779134260 @default.
- W4376564214 hasConceptScore W4376564214C3007834351 @default.
- W4376564214 hasConceptScore W4376564214C3008058167 @default.
- W4376564214 hasConceptScore W4376564214C41008148 @default.
- W4376564214 hasConceptScore W4376564214C41895202 @default.
- W4376564214 hasConceptScore W4376564214C50644808 @default.
- W4376564214 hasConceptScore W4376564214C524204448 @default.
- W4376564214 hasConceptScore W4376564214C71924100 @default.
- W4376564214 hasConceptScore W4376564214C81363708 @default.
- W4376564214 hasConceptScore W4376564214C89623803 @default.
- W4376564214 hasConceptScore W4376564214C98045186 @default.
- W4376564214 hasLocation W43765642141 @default.