Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376602046> ?p ?o ?g. }
- W4376602046 endingPage "n/a" @default.
- W4376602046 startingPage "n/a" @default.
- W4376602046 abstract "Protein functions associated with biological activity are precisely regulated by both tertiary structure and dynamic behavior. Thus, elucidating the high-resolution structures and quantitative information on in-solution dynamics is essential for understanding the molecular mechanisms. The main experimental approaches for determining tertiary structures include nuclear magnetic resonance (NMR), X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Among these procedures, recent remarkable advances in the hardware and analytical techniques of cryo-EM have increasingly determined novel atomic structures of macromolecules, especially those with large molecular weights and complex assemblies. In addition to these experimental approaches, deep learning techniques, such as AlphaFold 2, accurately predict structures from amino acid sequences, accelerating structural biology research. Meanwhile, the quantitative analyses of the protein dynamics are conducted using experimental approaches, such as NMR and hydrogen-deuterium mass spectrometry, and computational approaches, such as molecular dynamics (MD) simulations. Although these procedures can quantitatively explore dynamic behavior at high resolution, the fundamental difficulties, such as signal crowding and high computational cost, greatly hinder their application to large and complex biological macromolecules. In recent years, machine learning techniques, especially deep learning techniques, have been actively applied to structural data to identify features that are difficult for humans to recognize from big data. Here, we review our approach to accurately estimate dynamic properties associated with local fluctuations from three-dimensional cryo-EM density data using a deep learning technique combined with MD simulations." @default.
- W4376602046 created "2023-05-17" @default.
- W4376602046 creator A5023231952 @default.
- W4376602046 creator A5046211758 @default.
- W4376602046 creator A5053913367 @default.
- W4376602046 creator A5072608872 @default.
- W4376602046 date "2023-01-01" @default.
- W4376602046 modified "2023-10-14" @default.
- W4376602046 title "Quantitative analysis of protein dynamics using a deep learning technique combined with experimental cryo-EM density data and MD simulations" @default.
- W4376602046 cites W1031578623 @default.
- W4376602046 cites W1920022804 @default.
- W4376602046 cites W1983364832 @default.
- W4376602046 cites W2001923477 @default.
- W4376602046 cites W2035460215 @default.
- W4376602046 cites W2039175603 @default.
- W4376602046 cites W2086812659 @default.
- W4376602046 cites W2100455255 @default.
- W4376602046 cites W2127697948 @default.
- W4376602046 cites W2130479394 @default.
- W4376602046 cites W2211722331 @default.
- W4376602046 cites W2296686360 @default.
- W4376602046 cites W2299689158 @default.
- W4376602046 cites W2301358467 @default.
- W4376602046 cites W2336892636 @default.
- W4376602046 cites W2343172899 @default.
- W4376602046 cites W2608353599 @default.
- W4376602046 cites W2736403501 @default.
- W4376602046 cites W2765231623 @default.
- W4376602046 cites W2784274035 @default.
- W4376602046 cites W2786623728 @default.
- W4376602046 cites W2883831643 @default.
- W4376602046 cites W2889085087 @default.
- W4376602046 cites W2892113269 @default.
- W4376602046 cites W2894056527 @default.
- W4376602046 cites W2942817778 @default.
- W4376602046 cites W2955168413 @default.
- W4376602046 cites W2965115627 @default.
- W4376602046 cites W2966489898 @default.
- W4376602046 cites W2972127712 @default.
- W4376602046 cites W2980541278 @default.
- W4376602046 cites W3005171368 @default.
- W4376602046 cites W3016761449 @default.
- W4376602046 cites W3093295276 @default.
- W4376602046 cites W3127326657 @default.
- W4376602046 cites W3127416413 @default.
- W4376602046 cites W3177828909 @default.
- W4376602046 cites W3211795435 @default.
- W4376602046 cites W4229743141 @default.
- W4376602046 cites W4252440583 @default.
- W4376602046 cites W4286886626 @default.
- W4376602046 cites W4292567336 @default.
- W4376602046 doi "https://doi.org/10.2142/biophysico.bppb-v20.0022" @default.
- W4376602046 hasPublicationYear "2023" @default.
- W4376602046 type Work @default.
- W4376602046 citedByCount "0" @default.
- W4376602046 crossrefType "journal-article" @default.
- W4376602046 hasAuthorship W4376602046A5023231952 @default.
- W4376602046 hasAuthorship W4376602046A5046211758 @default.
- W4376602046 hasAuthorship W4376602046A5053913367 @default.
- W4376602046 hasAuthorship W4376602046A5072608872 @default.
- W4376602046 hasBestOaLocation W43766020461 @default.
- W4376602046 hasConcept C105795698 @default.
- W4376602046 hasConcept C108583219 @default.
- W4376602046 hasConcept C121332964 @default.
- W4376602046 hasConcept C138268822 @default.
- W4376602046 hasConcept C147597530 @default.
- W4376602046 hasConcept C154945302 @default.
- W4376602046 hasConcept C185592680 @default.
- W4376602046 hasConcept C186060115 @default.
- W4376602046 hasConcept C191120209 @default.
- W4376602046 hasConcept C20702342 @default.
- W4376602046 hasConcept C2775981520 @default.
- W4376602046 hasConcept C33923547 @default.
- W4376602046 hasConcept C41008148 @default.
- W4376602046 hasConcept C46141821 @default.
- W4376602046 hasConcept C55037315 @default.
- W4376602046 hasConcept C55493867 @default.
- W4376602046 hasConcept C59593255 @default.
- W4376602046 hasConcept C86803240 @default.
- W4376602046 hasConceptScore W4376602046C105795698 @default.
- W4376602046 hasConceptScore W4376602046C108583219 @default.
- W4376602046 hasConceptScore W4376602046C121332964 @default.
- W4376602046 hasConceptScore W4376602046C138268822 @default.
- W4376602046 hasConceptScore W4376602046C147597530 @default.
- W4376602046 hasConceptScore W4376602046C154945302 @default.
- W4376602046 hasConceptScore W4376602046C185592680 @default.
- W4376602046 hasConceptScore W4376602046C186060115 @default.
- W4376602046 hasConceptScore W4376602046C191120209 @default.
- W4376602046 hasConceptScore W4376602046C20702342 @default.
- W4376602046 hasConceptScore W4376602046C2775981520 @default.
- W4376602046 hasConceptScore W4376602046C33923547 @default.
- W4376602046 hasConceptScore W4376602046C41008148 @default.
- W4376602046 hasConceptScore W4376602046C46141821 @default.
- W4376602046 hasConceptScore W4376602046C55037315 @default.
- W4376602046 hasConceptScore W4376602046C55493867 @default.
- W4376602046 hasConceptScore W4376602046C59593255 @default.
- W4376602046 hasConceptScore W4376602046C86803240 @default.
- W4376602046 hasIssue "2" @default.