Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376602203> ?p ?o ?g. }
- W4376602203 endingPage "035011" @default.
- W4376602203 startingPage "035011" @default.
- W4376602203 abstract "Abstract We present an improved version of the nested sampling algorithm nessai in which the core algorithm is modified to use importance weights. In the modified algorithm, samples are drawn from a mixture of normalising flows and the requirement for samples to be independently and identically distributed (i.i.d.) according to the prior is relaxed. Furthermore, it allows for samples to be added in any order, independently of a likelihood constraint, and for the evidence to be updated with batches of samples. We call the modified algorithm i-nessai . We first validate i-nessai using analytic likelihoods with known Bayesian evidences and show that the evidence estimates are unbiased in up to 32 dimensions. We compare i-nessai to standard nessai for the analytic likelihoods and the Rosenbrock likelihood, the results show that i-nessai is consistent with nessai whilst producing more precise evidence estimates. We then test i-nessai on 64 simulated gravitational-wave signals from binary black hole coalescence and show that it produces unbiased estimates of the parameters. We compare our results to those obtained using standard nessai and dynesty and find that i-nessai requires 2.68 and 13.3 times fewer likelihood evaluations to converge, respectively. We also test i-nessai of an 80 s simulated binary neutron star signal using a reduced-order-quadrature basis and find that, on average, it converges in 24 min, whilst only requiring <?CDATA $1.01 times 10^{6}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>1.01</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> </mml:math> likelihood evaluations compared to <?CDATA $1.42 times 10^{6}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>1.42</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mn>6</mml:mn> </mml:mrow> </mml:msup> </mml:math> for nessai and <?CDATA $4.30 times 10^{7}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>4.30</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow> <mml:mn>7</mml:mn> </mml:mrow> </mml:msup> </mml:math> for dynesty . These results demonstrate that i-nessai is consistent with nessai and dynesty whilst also being more efficient." @default.
- W4376602203 created "2023-05-17" @default.
- W4376602203 creator A5024053323 @default.
- W4376602203 creator A5025057947 @default.
- W4376602203 creator A5060693842 @default.
- W4376602203 date "2023-07-25" @default.
- W4376602203 modified "2023-10-14" @default.
- W4376602203 title "Importance nested sampling with normalising flows" @default.
- W4376602203 cites W1134494461 @default.
- W4376602203 cites W1541288193 @default.
- W4376602203 cites W1886713477 @default.
- W4376602203 cites W1974971448 @default.
- W4376602203 cites W1990119892 @default.
- W4376602203 cites W1994870116 @default.
- W4376602203 cites W1996004845 @default.
- W4376602203 cites W2011301426 @default.
- W4376602203 cites W2026258334 @default.
- W4376602203 cites W2031854222 @default.
- W4376602203 cites W2037939815 @default.
- W4376602203 cites W2069159633 @default.
- W4376602203 cites W2146292423 @default.
- W4376602203 cites W2181523240 @default.
- W4376602203 cites W2214545089 @default.
- W4376602203 cites W2343709646 @default.
- W4376602203 cites W2413988422 @default.
- W4376602203 cites W2607418782 @default.
- W4376602203 cites W2790417170 @default.
- W4376602203 cites W2923635089 @default.
- W4376602203 cites W2931388211 @default.
- W4376602203 cites W2944973599 @default.
- W4376602203 cites W2959696098 @default.
- W4376602203 cites W2973034339 @default.
- W4376602203 cites W2975828310 @default.
- W4376602203 cites W2999365684 @default.
- W4376602203 cites W3003966848 @default.
- W4376602203 cites W3006452559 @default.
- W4376602203 cites W3019803136 @default.
- W4376602203 cites W3031064176 @default.
- W4376602203 cites W3031514878 @default.
- W4376602203 cites W3033838231 @default.
- W4376602203 cites W3087196548 @default.
- W4376602203 cites W3096831136 @default.
- W4376602203 cites W3101380508 @default.
- W4376602203 cites W3103145119 @default.
- W4376602203 cites W3104188978 @default.
- W4376602203 cites W3105850678 @default.
- W4376602203 cites W3121294540 @default.
- W4376602203 cites W3123560198 @default.
- W4376602203 cites W3129277585 @default.
- W4376602203 cites W3132521674 @default.
- W4376602203 cites W3132541752 @default.
- W4376602203 cites W3138718440 @default.
- W4376602203 cites W3145112245 @default.
- W4376602203 cites W3167053542 @default.
- W4376602203 cites W3168111221 @default.
- W4376602203 cites W32980360 @default.
- W4376602203 cites W4205334708 @default.
- W4376602203 cites W4226024614 @default.
- W4376602203 cites W4234856688 @default.
- W4376602203 cites W4237344571 @default.
- W4376602203 cites W4292155219 @default.
- W4376602203 doi "https://doi.org/10.1088/2632-2153/acd5aa" @default.
- W4376602203 hasPublicationYear "2023" @default.
- W4376602203 type Work @default.
- W4376602203 citedByCount "1" @default.
- W4376602203 countsByYear W43766022032023 @default.
- W4376602203 crossrefType "journal-article" @default.
- W4376602203 hasAuthorship W4376602203A5024053323 @default.
- W4376602203 hasAuthorship W4376602203A5025057947 @default.
- W4376602203 hasAuthorship W4376602203A5060693842 @default.
- W4376602203 hasBestOaLocation W43766022031 @default.
- W4376602203 hasConcept C105795698 @default.
- W4376602203 hasConcept C11413529 @default.
- W4376602203 hasConcept C122123141 @default.
- W4376602203 hasConcept C141513077 @default.
- W4376602203 hasConcept C28826006 @default.
- W4376602203 hasConcept C33923547 @default.
- W4376602203 hasConcept C41008148 @default.
- W4376602203 hasConcept C48372109 @default.
- W4376602203 hasConcept C94375191 @default.
- W4376602203 hasConceptScore W4376602203C105795698 @default.
- W4376602203 hasConceptScore W4376602203C11413529 @default.
- W4376602203 hasConceptScore W4376602203C122123141 @default.
- W4376602203 hasConceptScore W4376602203C141513077 @default.
- W4376602203 hasConceptScore W4376602203C28826006 @default.
- W4376602203 hasConceptScore W4376602203C33923547 @default.
- W4376602203 hasConceptScore W4376602203C41008148 @default.
- W4376602203 hasConceptScore W4376602203C48372109 @default.
- W4376602203 hasConceptScore W4376602203C94375191 @default.
- W4376602203 hasFunder F4320306076 @default.
- W4376602203 hasFunder F4320320366 @default.
- W4376602203 hasFunder F4320334632 @default.
- W4376602203 hasIssue "3" @default.
- W4376602203 hasLocation W43766022031 @default.
- W4376602203 hasLocation W43766022032 @default.
- W4376602203 hasOpenAccess W4376602203 @default.
- W4376602203 hasPrimaryLocation W43766022031 @default.
- W4376602203 hasRelatedWork W1986868580 @default.