Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376603529> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4376603529 abstract "Recently, an increasing number of Artificial Intelligence services have been developed for a variety of domains. Machine Learning and especially Deep Learning services require a large amount of data to provide their functionality. Since data collection is typically complex and difficult, there is often not enough data available. Machine learning services such as anomaly detection or disaggregation algorithms are also being developed in the smart living domain. In practice, however, only a few energy datasets are publicly available, as the collection of such data is expensive and time-consuming due to the equipment required. One way to generate more smart meter data is to use a simulation. Developing such a simulation that is capable of generating meaningful data is a complex task. Therefore, in this paper, we present the Synthetic Time Series Data Generator (SynTiSeD), a multi-agent-based simulation tool that generates meaningful synthetic energy data based on real-world data. Furthermore, SynTiSeD allows generating data of critical situations, which are important for the development of such services, but which cannot be provoked in the real world. For transferability, we demonstrate that Nonintrusive Load Monitoring algorithms trained on synthetic data generated by SynTiSeD provide meaningful results that are even better than those of models trained on real data." @default.
- W4376603529 created "2023-05-17" @default.
- W4376603529 creator A5016479989 @default.
- W4376603529 creator A5056002059 @default.
- W4376603529 creator A5065956056 @default.
- W4376603529 date "2023-05-09" @default.
- W4376603529 modified "2023-10-15" @default.
- W4376603529 title "SynTiSeD – Synthetic Time Series Data Generator" @default.
- W4376603529 cites W1810193247 @default.
- W4376603529 cites W1838851648 @default.
- W4376603529 cites W1996944908 @default.
- W4376603529 cites W2016634126 @default.
- W4376603529 cites W2055299260 @default.
- W4376603529 cites W2107659291 @default.
- W4376603529 cites W2566913924 @default.
- W4376603529 cites W2798925836 @default.
- W4376603529 cites W2811475562 @default.
- W4376603529 cites W2964254874 @default.
- W4376603529 cites W3015175351 @default.
- W4376603529 cites W3211469158 @default.
- W4376603529 cites W4225726402 @default.
- W4376603529 cites W52153049 @default.
- W4376603529 doi "https://doi.org/10.1109/mscpes58582.2023.10123429" @default.
- W4376603529 hasPublicationYear "2023" @default.
- W4376603529 type Work @default.
- W4376603529 citedByCount "0" @default.
- W4376603529 crossrefType "proceedings-article" @default.
- W4376603529 hasAuthorship W4376603529A5016479989 @default.
- W4376603529 hasAuthorship W4376603529A5056002059 @default.
- W4376603529 hasAuthorship W4376603529A5065956056 @default.
- W4376603529 hasConcept C105795698 @default.
- W4376603529 hasConcept C119857082 @default.
- W4376603529 hasConcept C121332964 @default.
- W4376603529 hasConcept C124101348 @default.
- W4376603529 hasConcept C127413603 @default.
- W4376603529 hasConcept C133462117 @default.
- W4376603529 hasConcept C151406439 @default.
- W4376603529 hasConcept C154945302 @default.
- W4376603529 hasConcept C160920958 @default.
- W4376603529 hasConcept C163258240 @default.
- W4376603529 hasConcept C201995342 @default.
- W4376603529 hasConcept C2780451532 @default.
- W4376603529 hasConcept C2780992000 @default.
- W4376603529 hasConcept C33923547 @default.
- W4376603529 hasConcept C41008148 @default.
- W4376603529 hasConcept C62520636 @default.
- W4376603529 hasConcept C67186912 @default.
- W4376603529 hasConcept C739882 @default.
- W4376603529 hasConcept C77088390 @default.
- W4376603529 hasConceptScore W4376603529C105795698 @default.
- W4376603529 hasConceptScore W4376603529C119857082 @default.
- W4376603529 hasConceptScore W4376603529C121332964 @default.
- W4376603529 hasConceptScore W4376603529C124101348 @default.
- W4376603529 hasConceptScore W4376603529C127413603 @default.
- W4376603529 hasConceptScore W4376603529C133462117 @default.
- W4376603529 hasConceptScore W4376603529C151406439 @default.
- W4376603529 hasConceptScore W4376603529C154945302 @default.
- W4376603529 hasConceptScore W4376603529C160920958 @default.
- W4376603529 hasConceptScore W4376603529C163258240 @default.
- W4376603529 hasConceptScore W4376603529C201995342 @default.
- W4376603529 hasConceptScore W4376603529C2780451532 @default.
- W4376603529 hasConceptScore W4376603529C2780992000 @default.
- W4376603529 hasConceptScore W4376603529C33923547 @default.
- W4376603529 hasConceptScore W4376603529C41008148 @default.
- W4376603529 hasConceptScore W4376603529C62520636 @default.
- W4376603529 hasConceptScore W4376603529C67186912 @default.
- W4376603529 hasConceptScore W4376603529C739882 @default.
- W4376603529 hasConceptScore W4376603529C77088390 @default.
- W4376603529 hasLocation W43766035291 @default.
- W4376603529 hasOpenAccess W4376603529 @default.
- W4376603529 hasPrimaryLocation W43766035291 @default.
- W4376603529 hasRelatedWork W190094394 @default.
- W4376603529 hasRelatedWork W1975179442 @default.
- W4376603529 hasRelatedWork W2238926016 @default.
- W4376603529 hasRelatedWork W2613265192 @default.
- W4376603529 hasRelatedWork W2786905048 @default.
- W4376603529 hasRelatedWork W3044458868 @default.
- W4376603529 hasRelatedWork W4293691173 @default.
- W4376603529 hasRelatedWork W4309045103 @default.
- W4376603529 hasRelatedWork W4315777689 @default.
- W4376603529 hasRelatedWork W1810031072 @default.
- W4376603529 isParatext "false" @default.
- W4376603529 isRetracted "false" @default.
- W4376603529 workType "article" @default.