Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376603940> ?p ?o ?g. }
- W4376603940 endingPage "4512" @default.
- W4376603940 startingPage "4498" @default.
- W4376603940 abstract "Two sensory neurons usually display trial-by-trial spike-count correlations given the repeated representations of a stimulus. The effects of such response correlations on population-level sensory coding have been the focal contention in computational neuroscience over the past few years. In the meantime, multivariate pattern analysis (MVPA) has become the leading analysis approach in functional magnetic resonance imaging (fMRI), but the effects of response correlations among voxel populations remain underexplored. Here, instead of conventional MVPA analysis, we calculate linear Fisher information of population responses in human visual cortex (five males, one female) and hypothetically remove response correlations between voxels. We found that voxelwise response correlations generally enhance stimulus information, a result standing in stark contrast to the detrimental effects of response correlations reported in empirical neurophysiological studies. By voxel-encoding modeling, we further show that these two seemingly opposite effects actually can coexist within the primate visual system. Furthermore, we use principal component analysis to decompose stimulus information in population responses onto different principal dimensions in a high-dimensional representational space. Interestingly, response correlations simultaneously reduce and enhance information on higher- and lower-variance principal dimensions, respectively. The relative strength of the two antagonistic effects within the same computational framework produces the apparent discrepancy in the effects of response correlations in neuronal and voxel populations. Our results suggest that multivariate fMRI data contain rich statistical structures that are directly related to sensory information representation, and the general computational framework to analyze neuronal and voxel population responses can be applied in many types of neural measurements. SIGNIFICANCE STATEMENT Despite the vast research interest in the effect of spike-count noise correlations on population codes in neurophysiology, it remains unclear how the response correlations between voxels influence MVPA in human imaging. We used an information-theoretic approach and showed that unlike the detrimental effects of response correlations reported in neurophysiology, voxelwise response correlations generally improve sensory coding. We conducted a series of in-depth analyses and demonstrated that neuronal and voxel response correlations can coexist within the visual system and share some common computational mechanisms. These results shed new light on how the population codes of sensory information can be evaluated via different neural measurements." @default.
- W4376603940 created "2023-05-17" @default.
- W4376603940 creator A5006181070 @default.
- W4376603940 creator A5016996300 @default.
- W4376603940 creator A5038512141 @default.
- W4376603940 creator A5090535979 @default.
- W4376603940 date "2023-05-15" @default.
- W4376603940 modified "2023-10-14" @default.
- W4376603940 title "Representational Geometries Reveal Differential Effects of Response Correlations on Population Codes in Neurophysiology and Functional Magnetic Resonance Imaging" @default.
- W4376603940 cites W1509412094 @default.
- W4376603940 cites W1919569760 @default.
- W4376603940 cites W1967925599 @default.
- W4376603940 cites W1970957555 @default.
- W4376603940 cites W1974297074 @default.
- W4376603940 cites W1977780807 @default.
- W4376603940 cites W1998050452 @default.
- W4376603940 cites W2004478098 @default.
- W4376603940 cites W2016966354 @default.
- W4376603940 cites W2025670747 @default.
- W4376603940 cites W2036084760 @default.
- W4376603940 cites W2040391279 @default.
- W4376603940 cites W2041716195 @default.
- W4376603940 cites W2056284400 @default.
- W4376603940 cites W2061170062 @default.
- W4376603940 cites W2063275134 @default.
- W4376603940 cites W2068516834 @default.
- W4376603940 cites W2079960018 @default.
- W4376603940 cites W2080275784 @default.
- W4376603940 cites W2082292139 @default.
- W4376603940 cites W2086338669 @default.
- W4376603940 cites W2086439867 @default.
- W4376603940 cites W2093386234 @default.
- W4376603940 cites W2104964662 @default.
- W4376603940 cites W2105031232 @default.
- W4376603940 cites W2124031070 @default.
- W4376603940 cites W2146246269 @default.
- W4376603940 cites W2157154487 @default.
- W4376603940 cites W2170235125 @default.
- W4376603940 cites W2174109782 @default.
- W4376603940 cites W2193980824 @default.
- W4376603940 cites W2334866619 @default.
- W4376603940 cites W2577289593 @default.
- W4376603940 cites W2744381455 @default.
- W4376603940 cites W2914335342 @default.
- W4376603940 cites W2951303683 @default.
- W4376603940 cites W2953091345 @default.
- W4376603940 cites W2970831813 @default.
- W4376603940 cites W2988907638 @default.
- W4376603940 cites W3045002515 @default.
- W4376603940 cites W3058089124 @default.
- W4376603940 cites W596773956 @default.
- W4376603940 doi "https://doi.org/10.1523/jneurosci.2228-22.2023" @default.
- W4376603940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37188515" @default.
- W4376603940 hasPublicationYear "2023" @default.
- W4376603940 type Work @default.
- W4376603940 citedByCount "0" @default.
- W4376603940 crossrefType "journal-article" @default.
- W4376603940 hasAuthorship W4376603940A5006181070 @default.
- W4376603940 hasAuthorship W4376603940A5016996300 @default.
- W4376603940 hasAuthorship W4376603940A5038512141 @default.
- W4376603940 hasAuthorship W4376603940A5090535979 @default.
- W4376603940 hasConcept C144024400 @default.
- W4376603940 hasConcept C149923435 @default.
- W4376603940 hasConcept C152478114 @default.
- W4376603940 hasConcept C153180895 @default.
- W4376603940 hasConcept C154945302 @default.
- W4376603940 hasConcept C15744967 @default.
- W4376603940 hasConcept C169760540 @default.
- W4376603940 hasConcept C180747234 @default.
- W4376603940 hasConcept C27438332 @default.
- W4376603940 hasConcept C2779226451 @default.
- W4376603940 hasConcept C2779345533 @default.
- W4376603940 hasConcept C2779918689 @default.
- W4376603940 hasConcept C2908647359 @default.
- W4376603940 hasConcept C41008148 @default.
- W4376603940 hasConcept C54170458 @default.
- W4376603940 hasConcept C77637269 @default.
- W4376603940 hasConcept C94487597 @default.
- W4376603940 hasConceptScore W4376603940C144024400 @default.
- W4376603940 hasConceptScore W4376603940C149923435 @default.
- W4376603940 hasConceptScore W4376603940C152478114 @default.
- W4376603940 hasConceptScore W4376603940C153180895 @default.
- W4376603940 hasConceptScore W4376603940C154945302 @default.
- W4376603940 hasConceptScore W4376603940C15744967 @default.
- W4376603940 hasConceptScore W4376603940C169760540 @default.
- W4376603940 hasConceptScore W4376603940C180747234 @default.
- W4376603940 hasConceptScore W4376603940C27438332 @default.
- W4376603940 hasConceptScore W4376603940C2779226451 @default.
- W4376603940 hasConceptScore W4376603940C2779345533 @default.
- W4376603940 hasConceptScore W4376603940C2779918689 @default.
- W4376603940 hasConceptScore W4376603940C2908647359 @default.
- W4376603940 hasConceptScore W4376603940C41008148 @default.
- W4376603940 hasConceptScore W4376603940C54170458 @default.
- W4376603940 hasConceptScore W4376603940C77637269 @default.
- W4376603940 hasConceptScore W4376603940C94487597 @default.
- W4376603940 hasFunder F4320309612 @default.
- W4376603940 hasFunder F4320321001 @default.
- W4376603940 hasIssue "24" @default.