Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376604906> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4376604906 endingPage "120209" @default.
- W4376604906 startingPage "120209" @default.
- W4376604906 abstract "With the explosive growth of the medical images, the high-resolution CT image(CI) data is of great value for medical research as well as a clinical diagnosis. Finding CIs similar to the input one from the large- scale CI database can effectively assist physicians to diagnose. The state-of-the-art content-based similarity retrieval of CIs often ignores the effect of image details on retrieval accuracy, and the retrieval accuracy and efficiency are usually not satisfactory. To address this challenge, in this paper, we take lung CI as an example and propose a progressive Detail-Content-based Similarity Retrieval (DCSR) of the lung CIs based on a Weakly Supervised deep Learning Network(WSLN) model. Two enabling techniques (i.e., the WSLN model and the DIndex scheme) are proposed to facilitate the DCSR processing of the large lung CIs. The experimental dataset is from three public datasets. Extensive experiments show that the WSLN-based DCSR method is about 45% more effective than the state-of-the-art methods in terms of the mean average precision(MAP). Meanwhile, the retrieval efficiency of the DIndex scheme is about 200% higher than that of sequential retrieval" @default.
- W4376604906 created "2023-05-17" @default.
- W4376604906 creator A5055651378 @default.
- W4376604906 creator A5080377353 @default.
- W4376604906 date "2023-05-01" @default.
- W4376604906 modified "2023-09-23" @default.
- W4376604906 title "Progressive Detail-Content-Based Similarity Retrieval over Large Lung CT Image Database Based on WSLN Model" @default.
- W4376604906 cites W2128409098 @default.
- W4376604906 cites W2151103935 @default.
- W4376604906 cites W2165232124 @default.
- W4376604906 cites W2194775991 @default.
- W4376604906 cites W2253429366 @default.
- W4376604906 cites W2568740995 @default.
- W4376604906 cites W2689604496 @default.
- W4376604906 cites W2746791238 @default.
- W4376604906 cites W2790858115 @default.
- W4376604906 cites W2939001550 @default.
- W4376604906 cites W2943858452 @default.
- W4376604906 cites W2947941786 @default.
- W4376604906 cites W3025144348 @default.
- W4376604906 cites W3094618223 @default.
- W4376604906 cites W3111644889 @default.
- W4376604906 cites W3120300855 @default.
- W4376604906 cites W3120785907 @default.
- W4376604906 cites W3196328583 @default.
- W4376604906 cites W3207171866 @default.
- W4376604906 cites W4283721615 @default.
- W4376604906 cites W4283769982 @default.
- W4376604906 cites W4318161900 @default.
- W4376604906 cites W4377142573 @default.
- W4376604906 doi "https://doi.org/10.1016/j.eswa.2023.120209" @default.
- W4376604906 hasPublicationYear "2023" @default.
- W4376604906 type Work @default.
- W4376604906 citedByCount "0" @default.
- W4376604906 crossrefType "journal-article" @default.
- W4376604906 hasAuthorship W4376604906A5055651378 @default.
- W4376604906 hasAuthorship W4376604906A5080377353 @default.
- W4376604906 hasConcept C103278499 @default.
- W4376604906 hasConcept C115961682 @default.
- W4376604906 hasConcept C124101348 @default.
- W4376604906 hasConcept C134306372 @default.
- W4376604906 hasConcept C153180895 @default.
- W4376604906 hasConcept C154945302 @default.
- W4376604906 hasConcept C1667742 @default.
- W4376604906 hasConcept C23123220 @default.
- W4376604906 hasConcept C2780052074 @default.
- W4376604906 hasConcept C33923547 @default.
- W4376604906 hasConcept C41008148 @default.
- W4376604906 hasConcept C77088390 @default.
- W4376604906 hasConcept C77618280 @default.
- W4376604906 hasConceptScore W4376604906C103278499 @default.
- W4376604906 hasConceptScore W4376604906C115961682 @default.
- W4376604906 hasConceptScore W4376604906C124101348 @default.
- W4376604906 hasConceptScore W4376604906C134306372 @default.
- W4376604906 hasConceptScore W4376604906C153180895 @default.
- W4376604906 hasConceptScore W4376604906C154945302 @default.
- W4376604906 hasConceptScore W4376604906C1667742 @default.
- W4376604906 hasConceptScore W4376604906C23123220 @default.
- W4376604906 hasConceptScore W4376604906C2780052074 @default.
- W4376604906 hasConceptScore W4376604906C33923547 @default.
- W4376604906 hasConceptScore W4376604906C41008148 @default.
- W4376604906 hasConceptScore W4376604906C77088390 @default.
- W4376604906 hasConceptScore W4376604906C77618280 @default.
- W4376604906 hasLocation W43766049061 @default.
- W4376604906 hasOpenAccess W4376604906 @default.
- W4376604906 hasPrimaryLocation W43766049061 @default.
- W4376604906 hasRelatedWork W1825808266 @default.
- W4376604906 hasRelatedWork W2159851394 @default.
- W4376604906 hasRelatedWork W2171664302 @default.
- W4376604906 hasRelatedWork W2231402596 @default.
- W4376604906 hasRelatedWork W2519881370 @default.
- W4376604906 hasRelatedWork W2734627150 @default.
- W4376604906 hasRelatedWork W3011792304 @default.
- W4376604906 hasRelatedWork W3150772620 @default.
- W4376604906 hasRelatedWork W4241548488 @default.
- W4376604906 hasRelatedWork W4253160043 @default.
- W4376604906 isParatext "false" @default.
- W4376604906 isRetracted "false" @default.
- W4376604906 workType "article" @default.