Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376605490> ?p ?o ?g. }
- W4376605490 endingPage "137329" @default.
- W4376605490 startingPage "137329" @default.
- W4376605490 abstract "Chemical and biomass processing systems release volatile matter compounds into the environment daily. Catalytic reforming can convert these compounds into valuable fuels, but developing stable and efficient catalysts is challenging. Machine learning can handle complex relationships in big data and optimize reaction conditions, making it an effective solution for addressing the mentioned issues. This study is the first to develop a machine-learning-based research framework for modeling, understanding, and optimizing the catalytic steam reforming of volatile matter compounds. Toluene catalytic steam reforming is used as a case study to show how chemical/textural analyses (e.g., X-ray diffraction analysis) can be used to obtain input features for machine learning models. Literature is used to compile a database covering a variety of catalyst characteristics and reaction conditions. The process is thoroughly analyzed, mechanistically discussed, modeled by six machine learning models, and optimized using the particle swarm optimization algorithm. Ensemble machine learning provides the best prediction performance (R2 > 0.976) for toluene conversion and product distribution. The optimal tar conversion (higher than 77.2%) is obtained at temperatures between 637.44 and 725.62 °C, with a steam-to-carbon molar ratio of 5.81–7.15 and a catalyst BET surface area of 476.03–638.55 m2/g. The feature importance analysis satisfactorily reveals the effects of input descriptors on model prediction. Operating conditions (50.9%) and catalyst properties (49.1%) are equally important in modeling. The developed framework can expedite the search for optimal catalyst characteristics and reaction conditions, not only for catalytic chemical processing but also for related research areas." @default.
- W4376605490 created "2023-05-17" @default.
- W4376605490 creator A5005929259 @default.
- W4376605490 creator A5011787152 @default.
- W4376605490 creator A5017041004 @default.
- W4376605490 creator A5018975442 @default.
- W4376605490 creator A5031010143 @default.
- W4376605490 creator A5039765785 @default.
- W4376605490 creator A5049101903 @default.
- W4376605490 creator A5055178753 @default.
- W4376605490 creator A5064791363 @default.
- W4376605490 creator A5073650721 @default.
- W4376605490 date "2023-08-01" @default.
- W4376605490 modified "2023-10-05" @default.
- W4376605490 title "Turning hazardous volatile matter compounds into fuel by catalytic steam reforming: An evolutionary machine learning approach" @default.
- W4376605490 cites W1120679757 @default.
- W4376605490 cites W1828940564 @default.
- W4376605490 cites W1967037502 @default.
- W4376605490 cites W1967081581 @default.
- W4376605490 cites W1970360626 @default.
- W4376605490 cites W1974831953 @default.
- W4376605490 cites W1978238997 @default.
- W4376605490 cites W1983299617 @default.
- W4376605490 cites W2000515020 @default.
- W4376605490 cites W2010105178 @default.
- W4376605490 cites W2016852696 @default.
- W4376605490 cites W2020409660 @default.
- W4376605490 cites W2022635022 @default.
- W4376605490 cites W2038816280 @default.
- W4376605490 cites W2039514294 @default.
- W4376605490 cites W2051455236 @default.
- W4376605490 cites W2063716862 @default.
- W4376605490 cites W2065588834 @default.
- W4376605490 cites W2077206348 @default.
- W4376605490 cites W2077696744 @default.
- W4376605490 cites W2086823028 @default.
- W4376605490 cites W2156700797 @default.
- W4376605490 cites W2179944293 @default.
- W4376605490 cites W2236533607 @default.
- W4376605490 cites W2319222399 @default.
- W4376605490 cites W2339326584 @default.
- W4376605490 cites W2341025027 @default.
- W4376605490 cites W2343275262 @default.
- W4376605490 cites W2494155828 @default.
- W4376605490 cites W2519554275 @default.
- W4376605490 cites W2521937759 @default.
- W4376605490 cites W2525800898 @default.
- W4376605490 cites W2573137292 @default.
- W4376605490 cites W2575042259 @default.
- W4376605490 cites W2737125528 @default.
- W4376605490 cites W2742506812 @default.
- W4376605490 cites W2771048549 @default.
- W4376605490 cites W2773621140 @default.
- W4376605490 cites W2778086178 @default.
- W4376605490 cites W2806736591 @default.
- W4376605490 cites W2807706663 @default.
- W4376605490 cites W2808387558 @default.
- W4376605490 cites W2811152768 @default.
- W4376605490 cites W2893966238 @default.
- W4376605490 cites W2899865563 @default.
- W4376605490 cites W2914669621 @default.
- W4376605490 cites W2922301886 @default.
- W4376605490 cites W2925255677 @default.
- W4376605490 cites W2935877504 @default.
- W4376605490 cites W2944373412 @default.
- W4376605490 cites W2970602317 @default.
- W4376605490 cites W2981214769 @default.
- W4376605490 cites W2982141575 @default.
- W4376605490 cites W2995803367 @default.
- W4376605490 cites W3001354491 @default.
- W4376605490 cites W3001537130 @default.
- W4376605490 cites W3005046431 @default.
- W4376605490 cites W3011316810 @default.
- W4376605490 cites W3013675910 @default.
- W4376605490 cites W3015166416 @default.
- W4376605490 cites W3015637256 @default.
- W4376605490 cites W3028334650 @default.
- W4376605490 cites W3028385016 @default.
- W4376605490 cites W3031690984 @default.
- W4376605490 cites W3032952304 @default.
- W4376605490 cites W3037792061 @default.
- W4376605490 cites W3044326079 @default.
- W4376605490 cites W3044413508 @default.
- W4376605490 cites W3114899386 @default.
- W4376605490 cites W3134401502 @default.
- W4376605490 cites W3136033096 @default.
- W4376605490 cites W3138734621 @default.
- W4376605490 cites W3153286168 @default.
- W4376605490 cites W3168253147 @default.
- W4376605490 cites W3173667771 @default.
- W4376605490 cites W3183728074 @default.
- W4376605490 cites W3184307270 @default.
- W4376605490 cites W3188507440 @default.
- W4376605490 cites W3189164715 @default.
- W4376605490 cites W3193889810 @default.
- W4376605490 cites W3196973597 @default.
- W4376605490 cites W3200557466 @default.
- W4376605490 cites W3206965553 @default.