Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376605536> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4376605536 abstract "The modern air traffic management system relies heavily on GNSS systems, which provide multiple information for communication, navigation, and surveillance systems, GNSS interference seriously affects the accuracy, consistency, and reliability of various aviation equipment, endangering aviation safety. When GNSS interferes, Automatic Dependent Surveillance-Broadcast (ADS-B) reported data will also appear abnormal, since ADS-B data mainly depends on GNSS. Therefore, the ADS-B report, which is high-frequency and contains spatiotemporal data characteristics provides a new idea for interference detection. However, most existing methods for detecting GNSS interference sources based on ADS-B data rely on only one or two index from a single ADS-B report. The inherent uncertainty of the ADS-B data leads to a tendency for these detection methods to identify non-interfering as interfering.In this paper, we propose a new A Machine Learning GNSS interference detection method based on ADS-B multi-index features, which reduces the impact of the uncertainty of the ADS-B data itself on GNSS interference detection through two improvements. Firstly, we analyze the multiple relevant features of the interference data based on laboratory simulation experiences and actual accidents, then observes the data distribution of each ADS-B feature under normal and interfering conditions and the interrelationship between ADS-B features. The Navigation Integrity Category (NIC), Navigation Accuracy Category for Position (NACp), Source Integrity Level (SIL), messages update interval, the change rate of ground speed, the change rate of position, track angle(TA), flight level(FL), and ADS-B equipment version were finally extracted as multi-index features. Secondly, this paper uses sliding windows to construct new inputs that contain time dimension change information. This construction of input data can obtain more accurate manual annotation and enable various machine learning classifiers to be more effectively applied to ADS-B report data.To prove the effectiveness of the above two improvements, the logical regression model based on multi-index system with original inputs construction, is used as a baseline for classifier performance, it first compared with the original method with a single index, through experiments we find that the classification method based on multiple index has a better performance. Then, various multi-index machine learning methods with new inputs constructed were used to detect GNSS interference, including Recurrent Neural Network(RNN) and Long Short Term Memory(LSTM). Also, take the multi-index logistic regression model as a baseline, and finally, the experimental results are compared and discussed." @default.
- W4376605536 created "2023-05-17" @default.
- W4376605536 creator A5017171775 @default.
- W4376605536 creator A5023903625 @default.
- W4376605536 creator A5043830579 @default.
- W4376605536 creator A5050833873 @default.
- W4376605536 creator A5053998916 @default.
- W4376605536 creator A5073646552 @default.
- W4376605536 date "2023-04-18" @default.
- W4376605536 modified "2023-09-28" @default.
- W4376605536 title "A Machine Learning GNSS Interference Detection Method based on ADS-B Multi-index Features" @default.
- W4376605536 cites W1573669321 @default.
- W4376605536 cites W2016249465 @default.
- W4376605536 cites W2047627251 @default.
- W4376605536 cites W2064675550 @default.
- W4376605536 cites W2068331431 @default.
- W4376605536 cites W2100649405 @default.
- W4376605536 cites W2320527016 @default.
- W4376605536 cites W2498119267 @default.
- W4376605536 cites W2762379022 @default.
- W4376605536 cites W2903950532 @default.
- W4376605536 cites W2909693411 @default.
- W4376605536 cites W2919115771 @default.
- W4376605536 cites W2999243690 @default.
- W4376605536 cites W3095323326 @default.
- W4376605536 cites W3109490305 @default.
- W4376605536 cites W3122406123 @default.
- W4376605536 cites W4213124622 @default.
- W4376605536 cites W4301003819 @default.
- W4376605536 doi "https://doi.org/10.1109/icns58246.2023.10124266" @default.
- W4376605536 hasPublicationYear "2023" @default.
- W4376605536 type Work @default.
- W4376605536 citedByCount "0" @default.
- W4376605536 crossrefType "proceedings-article" @default.
- W4376605536 hasAuthorship W4376605536A5017171775 @default.
- W4376605536 hasAuthorship W4376605536A5023903625 @default.
- W4376605536 hasAuthorship W4376605536A5043830579 @default.
- W4376605536 hasAuthorship W4376605536A5050833873 @default.
- W4376605536 hasAuthorship W4376605536A5053998916 @default.
- W4376605536 hasAuthorship W4376605536A5073646552 @default.
- W4376605536 hasConcept C127162648 @default.
- W4376605536 hasConcept C127413603 @default.
- W4376605536 hasConcept C14279187 @default.
- W4376605536 hasConcept C146978453 @default.
- W4376605536 hasConcept C154945302 @default.
- W4376605536 hasConcept C166212672 @default.
- W4376605536 hasConcept C166961238 @default.
- W4376605536 hasConcept C183384803 @default.
- W4376605536 hasConcept C2776436953 @default.
- W4376605536 hasConcept C32022120 @default.
- W4376605536 hasConcept C41008148 @default.
- W4376605536 hasConcept C60229501 @default.
- W4376605536 hasConcept C76155785 @default.
- W4376605536 hasConcept C79403827 @default.
- W4376605536 hasConceptScore W4376605536C127162648 @default.
- W4376605536 hasConceptScore W4376605536C127413603 @default.
- W4376605536 hasConceptScore W4376605536C14279187 @default.
- W4376605536 hasConceptScore W4376605536C146978453 @default.
- W4376605536 hasConceptScore W4376605536C154945302 @default.
- W4376605536 hasConceptScore W4376605536C166212672 @default.
- W4376605536 hasConceptScore W4376605536C166961238 @default.
- W4376605536 hasConceptScore W4376605536C183384803 @default.
- W4376605536 hasConceptScore W4376605536C2776436953 @default.
- W4376605536 hasConceptScore W4376605536C32022120 @default.
- W4376605536 hasConceptScore W4376605536C41008148 @default.
- W4376605536 hasConceptScore W4376605536C60229501 @default.
- W4376605536 hasConceptScore W4376605536C76155785 @default.
- W4376605536 hasConceptScore W4376605536C79403827 @default.
- W4376605536 hasLocation W43766055361 @default.
- W4376605536 hasOpenAccess W4376605536 @default.
- W4376605536 hasPrimaryLocation W43766055361 @default.
- W4376605536 hasRelatedWork W1990918429 @default.
- W4376605536 hasRelatedWork W2035213048 @default.
- W4376605536 hasRelatedWork W2094020783 @default.
- W4376605536 hasRelatedWork W2398140571 @default.
- W4376605536 hasRelatedWork W2541773187 @default.
- W4376605536 hasRelatedWork W2557480862 @default.
- W4376605536 hasRelatedWork W3035350709 @default.
- W4376605536 hasRelatedWork W3090731102 @default.
- W4376605536 hasRelatedWork W3206474342 @default.
- W4376605536 hasRelatedWork W4306250116 @default.
- W4376605536 isParatext "false" @default.
- W4376605536 isRetracted "false" @default.
- W4376605536 workType "article" @default.