Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376608918> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4376608918 abstract "People who cannot talk are called audibly impaired, and they communicate with others through other means. The most popular method of communication is through sign language. American Sign Language (ASL) is the de-facto standard for sign languages taught globally. Automated sign language recognition tries to bridge the gap. Convolutional neural networks are the method of choice these days when it comes to the classification of multiclass images. To recognize ASL alphabets, we used a CNN, traditional machine learning classifiers, and an artificial neural network. The Sign Language MNIST dataset has a total of 34,627 image data, of which 27,455 and 7172 are training and test data respectively. Except for J and Z, the dataset comprises 24 alphabets. We used the training dataset to train our CNN, ANN, and other machine learning models. Then examined our proposed CNN model as well as other models including ANN on the test dataset to check how well they recognize ASL alphabets correctly. The traditional classifiers such as Linear Regression, Logistic Regression, Random Forest, SVM, and ANN were able to achieve an accuracy of 71.94%, 90.16%, 98.63%, 97.92%, 82.96% respectively whereas the proposed CNN model achieved 100 % of accuracy on the unseen test data." @default.
- W4376608918 created "2023-05-17" @default.
- W4376608918 creator A5013227916 @default.
- W4376608918 creator A5068820048 @default.
- W4376608918 creator A5069073171 @default.
- W4376608918 creator A5077596245 @default.
- W4376608918 creator A5078768739 @default.
- W4376608918 creator A5088956116 @default.
- W4376608918 date "2022-12-21" @default.
- W4376608918 modified "2023-10-14" @default.
- W4376608918 title "Effective Recognition System of American Sign Language Alphabets using Machine Learning Classifiers, ANN and CNN" @default.
- W4376608918 doi "https://doi.org/10.1109/iatmsi56455.2022.10119336" @default.
- W4376608918 hasPublicationYear "2022" @default.
- W4376608918 type Work @default.
- W4376608918 citedByCount "0" @default.
- W4376608918 crossrefType "proceedings-article" @default.
- W4376608918 hasAuthorship W4376608918A5013227916 @default.
- W4376608918 hasAuthorship W4376608918A5068820048 @default.
- W4376608918 hasAuthorship W4376608918A5069073171 @default.
- W4376608918 hasAuthorship W4376608918A5077596245 @default.
- W4376608918 hasAuthorship W4376608918A5078768739 @default.
- W4376608918 hasAuthorship W4376608918A5088956116 @default.
- W4376608918 hasConcept C119857082 @default.
- W4376608918 hasConcept C12267149 @default.
- W4376608918 hasConcept C134306372 @default.
- W4376608918 hasConcept C138885662 @default.
- W4376608918 hasConcept C139676723 @default.
- W4376608918 hasConcept C153180895 @default.
- W4376608918 hasConcept C154945302 @default.
- W4376608918 hasConcept C16910744 @default.
- W4376608918 hasConcept C169258074 @default.
- W4376608918 hasConcept C190502265 @default.
- W4376608918 hasConcept C199360897 @default.
- W4376608918 hasConcept C204321447 @default.
- W4376608918 hasConcept C28490314 @default.
- W4376608918 hasConcept C33923547 @default.
- W4376608918 hasConcept C41008148 @default.
- W4376608918 hasConcept C41895202 @default.
- W4376608918 hasConcept C50644808 @default.
- W4376608918 hasConcept C522192633 @default.
- W4376608918 hasConcept C81363708 @default.
- W4376608918 hasConceptScore W4376608918C119857082 @default.
- W4376608918 hasConceptScore W4376608918C12267149 @default.
- W4376608918 hasConceptScore W4376608918C134306372 @default.
- W4376608918 hasConceptScore W4376608918C138885662 @default.
- W4376608918 hasConceptScore W4376608918C139676723 @default.
- W4376608918 hasConceptScore W4376608918C153180895 @default.
- W4376608918 hasConceptScore W4376608918C154945302 @default.
- W4376608918 hasConceptScore W4376608918C16910744 @default.
- W4376608918 hasConceptScore W4376608918C169258074 @default.
- W4376608918 hasConceptScore W4376608918C190502265 @default.
- W4376608918 hasConceptScore W4376608918C199360897 @default.
- W4376608918 hasConceptScore W4376608918C204321447 @default.
- W4376608918 hasConceptScore W4376608918C28490314 @default.
- W4376608918 hasConceptScore W4376608918C33923547 @default.
- W4376608918 hasConceptScore W4376608918C41008148 @default.
- W4376608918 hasConceptScore W4376608918C41895202 @default.
- W4376608918 hasConceptScore W4376608918C50644808 @default.
- W4376608918 hasConceptScore W4376608918C522192633 @default.
- W4376608918 hasConceptScore W4376608918C81363708 @default.
- W4376608918 hasLocation W43766089181 @default.
- W4376608918 hasOpenAccess W4376608918 @default.
- W4376608918 hasPrimaryLocation W43766089181 @default.
- W4376608918 hasRelatedWork W2771907641 @default.
- W4376608918 hasRelatedWork W2964383635 @default.
- W4376608918 hasRelatedWork W2978290780 @default.
- W4376608918 hasRelatedWork W2979979539 @default.
- W4376608918 hasRelatedWork W3156786002 @default.
- W4376608918 hasRelatedWork W3193301557 @default.
- W4376608918 hasRelatedWork W3195168932 @default.
- W4376608918 hasRelatedWork W3208266890 @default.
- W4376608918 hasRelatedWork W3217110323 @default.
- W4376608918 hasRelatedWork W4205958290 @default.
- W4376608918 isParatext "false" @default.
- W4376608918 isRetracted "false" @default.
- W4376608918 workType "article" @default.