Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376619257> ?p ?o ?g. }
- W4376619257 endingPage "108293" @default.
- W4376619257 startingPage "108293" @default.
- W4376619257 abstract "This work proposed a hybrid molecular descriptor combined with deep learning method to model and evaluate the rational application of ionic liquids (ILs) through deep convolutional neural networks (DCNN). A total toxicity dataset of ILs against the leukemia rat cell line (ICP-81) was collected from the literature. The MACCS fingerprint and sigma profiles of the ILs were calculated using the RDKit packet and the COSMO-SAC model, respectively. The hyperparameters of the DCNN model were optimized by combining Bayesian optimization and local search algorithm. The importance of the feature descriptors was determined based on their influence on the DCNN model. The obtained results showed that the proposed model had a satisfactory prediction accuracy, and the coefficient of determination (R2) for the train set and test set were 0.972 and 0.965. This work provides guidance for the screening of ILs and their rational application in the industry." @default.
- W4376619257 created "2023-05-17" @default.
- W4376619257 creator A5010912358 @default.
- W4376619257 creator A5011569931 @default.
- W4376619257 creator A5027619718 @default.
- W4376619257 creator A5030424316 @default.
- W4376619257 creator A5047187328 @default.
- W4376619257 creator A5050790437 @default.
- W4376619257 creator A5061859602 @default.
- W4376619257 creator A5070855365 @default.
- W4376619257 creator A5072423740 @default.
- W4376619257 creator A5089532922 @default.
- W4376619257 date "2023-08-01" @default.
- W4376619257 modified "2023-10-06" @default.
- W4376619257 title "Modeling the toxicity of ionic liquids based on deep learning method" @default.
- W4376619257 cites W1677182931 @default.
- W4376619257 cites W187734647 @default.
- W4376619257 cites W1964289037 @default.
- W4376619257 cites W1966750682 @default.
- W4376619257 cites W1974231846 @default.
- W4376619257 cites W1983107047 @default.
- W4376619257 cites W1985818093 @default.
- W4376619257 cites W2005307077 @default.
- W4376619257 cites W2011149424 @default.
- W4376619257 cites W2026578895 @default.
- W4376619257 cites W2029945563 @default.
- W4376619257 cites W2035339965 @default.
- W4376619257 cites W2038347420 @default.
- W4376619257 cites W2043709433 @default.
- W4376619257 cites W2047434972 @default.
- W4376619257 cites W2052665036 @default.
- W4376619257 cites W2055942366 @default.
- W4376619257 cites W2056520989 @default.
- W4376619257 cites W2089545684 @default.
- W4376619257 cites W2102636708 @default.
- W4376619257 cites W2107878631 @default.
- W4376619257 cites W2119498442 @default.
- W4376619257 cites W2124061234 @default.
- W4376619257 cites W2165359000 @default.
- W4376619257 cites W2170973067 @default.
- W4376619257 cites W2617784531 @default.
- W4376619257 cites W2767723553 @default.
- W4376619257 cites W2792093157 @default.
- W4376619257 cites W2803888018 @default.
- W4376619257 cites W2852463872 @default.
- W4376619257 cites W2888967133 @default.
- W4376619257 cites W2896823590 @default.
- W4376619257 cites W2899070097 @default.
- W4376619257 cites W2962949934 @default.
- W4376619257 cites W2973442180 @default.
- W4376619257 cites W2985347158 @default.
- W4376619257 cites W3010886216 @default.
- W4376619257 cites W3015134788 @default.
- W4376619257 cites W3031150984 @default.
- W4376619257 cites W3041041974 @default.
- W4376619257 cites W3092578031 @default.
- W4376619257 cites W3130893081 @default.
- W4376619257 cites W3131748678 @default.
- W4376619257 cites W3159229281 @default.
- W4376619257 cites W3160026094 @default.
- W4376619257 cites W3184815690 @default.
- W4376619257 cites W3191324478 @default.
- W4376619257 cites W3209196640 @default.
- W4376619257 cites W4205824798 @default.
- W4376619257 cites W4220728863 @default.
- W4376619257 cites W4224284514 @default.
- W4376619257 cites W4295949371 @default.
- W4376619257 cites W4310108111 @default.
- W4376619257 cites W591943826 @default.
- W4376619257 doi "https://doi.org/10.1016/j.compchemeng.2023.108293" @default.
- W4376619257 hasPublicationYear "2023" @default.
- W4376619257 type Work @default.
- W4376619257 citedByCount "1" @default.
- W4376619257 countsByYear W43766192572023 @default.
- W4376619257 crossrefType "journal-article" @default.
- W4376619257 hasAuthorship W4376619257A5010912358 @default.
- W4376619257 hasAuthorship W4376619257A5011569931 @default.
- W4376619257 hasAuthorship W4376619257A5027619718 @default.
- W4376619257 hasAuthorship W4376619257A5030424316 @default.
- W4376619257 hasAuthorship W4376619257A5047187328 @default.
- W4376619257 hasAuthorship W4376619257A5050790437 @default.
- W4376619257 hasAuthorship W4376619257A5061859602 @default.
- W4376619257 hasAuthorship W4376619257A5070855365 @default.
- W4376619257 hasAuthorship W4376619257A5072423740 @default.
- W4376619257 hasAuthorship W4376619257A5089532922 @default.
- W4376619257 hasConcept C108583219 @default.
- W4376619257 hasConcept C119857082 @default.
- W4376619257 hasConcept C153180895 @default.
- W4376619257 hasConcept C154945302 @default.
- W4376619257 hasConcept C164126121 @default.
- W4376619257 hasConcept C164923092 @default.
- W4376619257 hasConcept C169903167 @default.
- W4376619257 hasConcept C177264268 @default.
- W4376619257 hasConcept C199360897 @default.
- W4376619257 hasConcept C2778049539 @default.
- W4376619257 hasConcept C41008148 @default.
- W4376619257 hasConcept C50644808 @default.
- W4376619257 hasConcept C81363708 @default.