Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376619776> ?p ?o ?g. }
- W4376619776 endingPage "120225" @default.
- W4376619776 startingPage "120225" @default.
- W4376619776 abstract "Nowadays, bots can be seen everywhere on the Internet and are responsible for a large percentage of website traffic. The problem of bot detection has increasingly gained attention since more and more bots have been abused from click fraud in online advertisements to launching credential stuffing attacks for harvesting user accounts at a large scale. In this work, we present an end-to-end deep framework for bot detection based on computer mouse movements. Specifically, we propose a novel visual representation scheme that can simultaneously encode spatial and kinematic information in mouse movements into an image which can then be used as the input to Convolutional Neural Networks (CNN). Various strategies to encode kinematic features into images are investigated to obtain a better scheme of visual representation. Experimental results show that the proposed representation scheme in combination with CNN outperforms several baseline models with a TPR of 99.34% in detecting known bots and can be generalized to unknown bots with a highest accuracy of 99.20%. We also demonstrate that the proposed approach can reach acceptable performance levels even for models trained with a small number of training samples. This makes the deployment of our approach easier in real-world scenarios." @default.
- W4376619776 created "2023-05-17" @default.
- W4376619776 creator A5007216806 @default.
- W4376619776 creator A5008402054 @default.
- W4376619776 creator A5019408798 @default.
- W4376619776 creator A5082529620 @default.
- W4376619776 date "2023-05-01" @default.
- W4376619776 modified "2023-09-28" @default.
- W4376619776 title "Exploring visual representations of computer mouse movements for bot detection using deep learning approaches" @default.
- W4376619776 cites W1689711448 @default.
- W4376619776 cites W1958936039 @default.
- W4376619776 cites W1964908178 @default.
- W4376619776 cites W1972978214 @default.
- W4376619776 cites W1977080779 @default.
- W4376619776 cites W2003658560 @default.
- W4376619776 cites W2031213082 @default.
- W4376619776 cites W2054137409 @default.
- W4376619776 cites W2054177909 @default.
- W4376619776 cites W2056974596 @default.
- W4376619776 cites W2080562691 @default.
- W4376619776 cites W2153635508 @default.
- W4376619776 cites W2158804777 @default.
- W4376619776 cites W2194775991 @default.
- W4376619776 cites W2254573161 @default.
- W4376619776 cites W2293257959 @default.
- W4376619776 cites W2402857500 @default.
- W4376619776 cites W2540977243 @default.
- W4376619776 cites W2550436552 @default.
- W4376619776 cites W2765435026 @default.
- W4376619776 cites W2767779661 @default.
- W4376619776 cites W2787296320 @default.
- W4376619776 cites W2794209590 @default.
- W4376619776 cites W2794632300 @default.
- W4376619776 cites W2809613411 @default.
- W4376619776 cites W2885195348 @default.
- W4376619776 cites W2900969057 @default.
- W4376619776 cites W2912868009 @default.
- W4376619776 cites W2916091221 @default.
- W4376619776 cites W2919115771 @default.
- W4376619776 cites W2951472717 @default.
- W4376619776 cites W2962823371 @default.
- W4376619776 cites W2980104381 @default.
- W4376619776 cites W2999057584 @default.
- W4376619776 cites W3005573866 @default.
- W4376619776 cites W3017227890 @default.
- W4376619776 cites W3021390590 @default.
- W4376619776 cites W3021533631 @default.
- W4376619776 cites W3035366542 @default.
- W4376619776 cites W3043980390 @default.
- W4376619776 cites W3044217673 @default.
- W4376619776 cites W3093744263 @default.
- W4376619776 cites W3102505547 @default.
- W4376619776 cites W3125182500 @default.
- W4376619776 cites W3138516171 @default.
- W4376619776 cites W3155048132 @default.
- W4376619776 cites W3159795246 @default.
- W4376619776 cites W3160583301 @default.
- W4376619776 cites W3169649651 @default.
- W4376619776 cites W3198464804 @default.
- W4376619776 doi "https://doi.org/10.1016/j.eswa.2023.120225" @default.
- W4376619776 hasPublicationYear "2023" @default.
- W4376619776 type Work @default.
- W4376619776 citedByCount "0" @default.
- W4376619776 crossrefType "journal-article" @default.
- W4376619776 hasAuthorship W4376619776A5007216806 @default.
- W4376619776 hasAuthorship W4376619776A5008402054 @default.
- W4376619776 hasAuthorship W4376619776A5019408798 @default.
- W4376619776 hasAuthorship W4376619776A5082529620 @default.
- W4376619776 hasConcept C104317684 @default.
- W4376619776 hasConcept C105339364 @default.
- W4376619776 hasConcept C108583219 @default.
- W4376619776 hasConcept C110875604 @default.
- W4376619776 hasConcept C111919701 @default.
- W4376619776 hasConcept C119857082 @default.
- W4376619776 hasConcept C121332964 @default.
- W4376619776 hasConcept C134306372 @default.
- W4376619776 hasConcept C136764020 @default.
- W4376619776 hasConcept C154945302 @default.
- W4376619776 hasConcept C17744445 @default.
- W4376619776 hasConcept C185592680 @default.
- W4376619776 hasConcept C199539241 @default.
- W4376619776 hasConcept C2776359362 @default.
- W4376619776 hasConcept C2777810591 @default.
- W4376619776 hasConcept C31972630 @default.
- W4376619776 hasConcept C33923547 @default.
- W4376619776 hasConcept C38652104 @default.
- W4376619776 hasConcept C39920418 @default.
- W4376619776 hasConcept C41008148 @default.
- W4376619776 hasConcept C55493867 @default.
- W4376619776 hasConcept C66746571 @default.
- W4376619776 hasConcept C74650414 @default.
- W4376619776 hasConcept C77618280 @default.
- W4376619776 hasConcept C81363708 @default.
- W4376619776 hasConcept C94625758 @default.
- W4376619776 hasConceptScore W4376619776C104317684 @default.
- W4376619776 hasConceptScore W4376619776C105339364 @default.
- W4376619776 hasConceptScore W4376619776C108583219 @default.
- W4376619776 hasConceptScore W4376619776C110875604 @default.