Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376632841> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4376632841 abstract "Self-driving vehicles (SDVs) are becoming reality but still suffer from long-tail challenges during natural driving: the SDVs will continually encounter rare, safety-critical cases that may not be included in the dataset they were trained. Some safety-assurance planners solve this problem by being conservative in all possible cases, which may significantly affect driving mobility. To this end, this work proposes a method to automatically adjust the conservative level according to each case's long-tail rate, named dynamically conservative planner (DCP). We first define the long-tail rate as an SDV's confidence to pass a driving case. The rate indicates the probability of safe-critical events and is estimated using the statistics bootstrapped method with historical data. Then, a reinforcement learning-based planner is designed to contain candidate policies with different conservative levels. The final policy is optimized based on the estimated long-tail rate. In this way, the DCP is designed to automatically adjust to be more conservative in low-confidence long-tail cases while keeping efficient otherwise. The DCP is evaluated in the CARLA simulator using driving cases with long-tail distributed training data. The results show that the DCP can accurately estimate the long-tail rate to identify potential risks. Based on the rate, the DCP automatically avoids potential collisions in long-tail cases using conservative decisions while not affecting the average velocity in other typical cases. Thus, the DCP is safer and more efficient than the baselines with fixed conservative levels, e.g., an always conservative planner. This work provides a technique to guarantee SDV's performance in unexpected driving cases without resorting to a global conservative setting, which contributes to solving the long-tail problem practically." @default.
- W4376632841 created "2023-05-17" @default.
- W4376632841 creator A5002267722 @default.
- W4376632841 creator A5013415505 @default.
- W4376632841 creator A5016651437 @default.
- W4376632841 creator A5030877823 @default.
- W4376632841 creator A5066720988 @default.
- W4376632841 creator A5091952746 @default.
- W4376632841 date "2023-05-12" @default.
- W4376632841 modified "2023-09-24" @default.
- W4376632841 title "Dynamically Conservative Self-Driving Planner for Long-Tail Cases" @default.
- W4376632841 doi "https://doi.org/10.48550/arxiv.2305.07497" @default.
- W4376632841 hasPublicationYear "2023" @default.
- W4376632841 type Work @default.
- W4376632841 citedByCount "0" @default.
- W4376632841 crossrefType "posted-content" @default.
- W4376632841 hasAuthorship W4376632841A5002267722 @default.
- W4376632841 hasAuthorship W4376632841A5013415505 @default.
- W4376632841 hasAuthorship W4376632841A5016651437 @default.
- W4376632841 hasAuthorship W4376632841A5030877823 @default.
- W4376632841 hasAuthorship W4376632841A5066720988 @default.
- W4376632841 hasAuthorship W4376632841A5091952746 @default.
- W4376632841 hasBestOaLocation W43766328411 @default.
- W4376632841 hasConcept C105795698 @default.
- W4376632841 hasConcept C154945302 @default.
- W4376632841 hasConcept C2776654903 @default.
- W4376632841 hasConcept C2776999362 @default.
- W4376632841 hasConcept C33923547 @default.
- W4376632841 hasConcept C38652104 @default.
- W4376632841 hasConcept C41008148 @default.
- W4376632841 hasConcept C44154836 @default.
- W4376632841 hasConcept C44249647 @default.
- W4376632841 hasConcept C97541855 @default.
- W4376632841 hasConceptScore W4376632841C105795698 @default.
- W4376632841 hasConceptScore W4376632841C154945302 @default.
- W4376632841 hasConceptScore W4376632841C2776654903 @default.
- W4376632841 hasConceptScore W4376632841C2776999362 @default.
- W4376632841 hasConceptScore W4376632841C33923547 @default.
- W4376632841 hasConceptScore W4376632841C38652104 @default.
- W4376632841 hasConceptScore W4376632841C41008148 @default.
- W4376632841 hasConceptScore W4376632841C44154836 @default.
- W4376632841 hasConceptScore W4376632841C44249647 @default.
- W4376632841 hasConceptScore W4376632841C97541855 @default.
- W4376632841 hasLocation W43766328411 @default.
- W4376632841 hasOpenAccess W4376632841 @default.
- W4376632841 hasPrimaryLocation W43766328411 @default.
- W4376632841 hasRelatedWork W1562959674 @default.
- W4376632841 hasRelatedWork W2923653485 @default.
- W4376632841 hasRelatedWork W2957776456 @default.
- W4376632841 hasRelatedWork W3094511556 @default.
- W4376632841 hasRelatedWork W3115511323 @default.
- W4376632841 hasRelatedWork W3119613234 @default.
- W4376632841 hasRelatedWork W3126673337 @default.
- W4376632841 hasRelatedWork W3136325136 @default.
- W4376632841 hasRelatedWork W4221161273 @default.
- W4376632841 hasRelatedWork W4283793632 @default.
- W4376632841 isParatext "false" @default.
- W4376632841 isRetracted "false" @default.
- W4376632841 workType "article" @default.