Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376636622> ?p ?o ?g. }
- W4376636622 abstract "Abstract PURPOSE Varied therapeutic responses were observed among cancer patients receiving the same treatment regimen, highlighting the challenge of identifying patients most likely to benefit from a given therapy. Here, we present an artificial intelligence-based approach, called CDK4/6 inhibitor Response Model (CRM), to address the complexity of predicting patient responses to treatment by a certain clinical scene on CDK4/6 inhibitors (CDK4/6i). PATIENTS AND METHODS To train the CRM, we transformed the genomic data of 980 breast cancer patients from the TCGA database into activity profiles of signaling pathways (APSP) by utilizing the modified Damage Assessment of Genomic Mutations (DAGM) algorithm. A scoring model was then established by random forest algorithm to classify the HR+/HER2− and HR−/HER2− breast cancer molecular subtypes by the differential APSP features between the two, which reasonably reflected the potential role played by CDK4/6 molecules in HR+/HER2− breast cancer cells. The effectiveness of CRM was then tested in a separate local patient cohort (n = 343) in Guangdong, China. Twin in-silico clinical trials (ICT) of previously disclosed clinical trials ( NCT02246621 , NCT02079636 , NCT03155997 , NCT02513394 , NCT02675231 ) were performed to demonstrate the potential of CRM in generating concerted results as the real-world clinical outcomes. RESULTS The CRM displayed high precision in classifying HR+/HER2− and HR−/HER2− breast cancer patients in both TCGA (AUC=0.9956) and local patient cohorts (AUC=0.9795). Significantly, the scores were distinct (p = 0.025) between CDK4/6i-treated patients with different responses. Breast cancer patients from different subtypes were grouped into five distinct populations based on the scores assigned by the CRM. From twin ICT, the CRM scores reflected the differential responses of patient groups to CDK4/6i-based therapies. CONCLUSION The CRM score showed not only a robust association to clinically observed CDK4/6i responses but also heterogenetic responses across subtypes. More than half of HR+/HER2+ patients may be benefited from CDK4/6i-based treatment. The CRM empowered us to conduct ICT on different types of cancer patients responding to CDK4/6i-based therapies. These findings showed the potential of CRM as the companioned ICT to guide CDK4/6i application in the clinical end. CRM-guided ICT could be a universal method to demonstrate drug sensitivity to various patients." @default.
- W4376636622 created "2023-05-17" @default.
- W4376636622 creator A5018031047 @default.
- W4376636622 creator A5020919165 @default.
- W4376636622 creator A5041893674 @default.
- W4376636622 creator A5047457258 @default.
- W4376636622 creator A5056459929 @default.
- W4376636622 creator A5060367767 @default.
- W4376636622 creator A5064182719 @default.
- W4376636622 creator A5075960242 @default.
- W4376636622 creator A5082256411 @default.
- W4376636622 creator A5088595510 @default.
- W4376636622 creator A5088880132 @default.
- W4376636622 creator A5089220561 @default.
- W4376636622 date "2023-05-16" @default.
- W4376636622 modified "2023-10-18" @default.
- W4376636622 title "AI-based Model CRM to Evaluate the Responses of Breast Cancer Patients to CDK4/6 Inhibitors-Based Therapies and Simulate Real-World Clinical Trials" @default.
- W4376636622 cites W2117775530 @default.
- W4376636622 cites W2144790402 @default.
- W4376636622 cites W2219817965 @default.
- W4376636622 cites W2290950904 @default.
- W4376636622 cites W2295971206 @default.
- W4376636622 cites W2309969893 @default.
- W4376636622 cites W2318725321 @default.
- W4376636622 cites W2373606074 @default.
- W4376636622 cites W2464034369 @default.
- W4376636622 cites W2533474121 @default.
- W4376636622 cites W2552099557 @default.
- W4376636622 cites W2620993107 @default.
- W4376636622 cites W2750328162 @default.
- W4376636622 cites W2763875663 @default.
- W4376636622 cites W2802776309 @default.
- W4376636622 cites W2804105316 @default.
- W4376636622 cites W2805575723 @default.
- W4376636622 cites W2883876469 @default.
- W4376636622 cites W2887311611 @default.
- W4376636622 cites W2891700678 @default.
- W4376636622 cites W2894607768 @default.
- W4376636622 cites W2902401096 @default.
- W4376636622 cites W2903599006 @default.
- W4376636622 cites W2910972034 @default.
- W4376636622 cites W2917464640 @default.
- W4376636622 cites W2925017918 @default.
- W4376636622 cites W2946317931 @default.
- W4376636622 cites W2977211443 @default.
- W4376636622 cites W2990091959 @default.
- W4376636622 cites W2995106101 @default.
- W4376636622 cites W3007479170 @default.
- W4376636622 cites W3010575887 @default.
- W4376636622 cites W3012087478 @default.
- W4376636622 cites W3016055296 @default.
- W4376636622 cites W3020482066 @default.
- W4376636622 cites W3048867431 @default.
- W4376636622 cites W3083198770 @default.
- W4376636622 cites W3085367132 @default.
- W4376636622 cites W3111996377 @default.
- W4376636622 cites W3116228263 @default.
- W4376636622 cites W3119957878 @default.
- W4376636622 cites W3133922878 @default.
- W4376636622 cites W3155903223 @default.
- W4376636622 cites W3167855488 @default.
- W4376636622 cites W3167976827 @default.
- W4376636622 cites W3176597278 @default.
- W4376636622 cites W3196278183 @default.
- W4376636622 cites W3199373900 @default.
- W4376636622 cites W3206169364 @default.
- W4376636622 cites W345803373 @default.
- W4376636622 cites W4200066800 @default.
- W4376636622 cites W4200620750 @default.
- W4376636622 cites W4206127585 @default.
- W4376636622 cites W4206349107 @default.
- W4376636622 cites W4281645436 @default.
- W4376636622 cites W4308368733 @default.
- W4376636622 doi "https://doi.org/10.1101/2023.05.15.23289976" @default.
- W4376636622 hasPublicationYear "2023" @default.
- W4376636622 type Work @default.
- W4376636622 citedByCount "0" @default.
- W4376636622 crossrefType "posted-content" @default.
- W4376636622 hasAuthorship W4376636622A5018031047 @default.
- W4376636622 hasAuthorship W4376636622A5020919165 @default.
- W4376636622 hasAuthorship W4376636622A5041893674 @default.
- W4376636622 hasAuthorship W4376636622A5047457258 @default.
- W4376636622 hasAuthorship W4376636622A5056459929 @default.
- W4376636622 hasAuthorship W4376636622A5060367767 @default.
- W4376636622 hasAuthorship W4376636622A5064182719 @default.
- W4376636622 hasAuthorship W4376636622A5075960242 @default.
- W4376636622 hasAuthorship W4376636622A5082256411 @default.
- W4376636622 hasAuthorship W4376636622A5088595510 @default.
- W4376636622 hasAuthorship W4376636622A5088880132 @default.
- W4376636622 hasAuthorship W4376636622A5089220561 @default.
- W4376636622 hasBestOaLocation W43766366221 @default.
- W4376636622 hasConcept C104317684 @default.
- W4376636622 hasConcept C121608353 @default.
- W4376636622 hasConcept C126322002 @default.
- W4376636622 hasConcept C143998085 @default.
- W4376636622 hasConcept C2775905019 @default.
- W4376636622 hasConcept C530470458 @default.
- W4376636622 hasConcept C535046627 @default.
- W4376636622 hasConcept C55493867 @default.
- W4376636622 hasConcept C71924100 @default.