Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376643672> ?p ?o ?g. }
- W4376643672 abstract "Abstract In multi-objective optimization, it becomes prohibitively difficult to cover the Pareto front (PF) as the number of points scales exponentially with the dimensionality of the objective space. The challenge is exacerbated in expensive optimization domains where evaluation data is at a premium. To overcome insufficient representations of PFs, Pareto estimation (PE) invokes inverse machine learning to map preferred but unexplored regions along the front to the Pareto set in decision space. However, the accuracy of the inverse model depends on the training data, which is inherently scarce/small given high-dimensional/expensive objectives. To alleviate this small data challenge, this paper marks a first study on multi-source inverse transfer learning for PE. A method to maximally utilize experiential source tasks to augment PE in the target optimization task is proposed. Information transfers between heterogeneous source-target pairs is uniquely enabled in the inverse setting through the unification provided by common objective spaces. Our approach is tested experimentally on benchmark functions as well as on high-fidelity, multidisciplinary simulation data of composite materials manufacturing processes, revealing significant gains to the predictive accuracy and PF approximation capacity of Pareto set learning. With such accurate inverse models made feasible, a future of on-demand human-machine interaction facilitating multi-objective decisions is envisioned." @default.
- W4376643672 created "2023-05-17" @default.
- W4376643672 creator A5002694277 @default.
- W4376643672 creator A5025294714 @default.
- W4376643672 creator A5036928886 @default.
- W4376643672 creator A5041091856 @default.
- W4376643672 creator A5046611833 @default.
- W4376643672 creator A5060723344 @default.
- W4376643672 date "2023-05-15" @default.
- W4376643672 modified "2023-09-26" @default.
- W4376643672 title "Pareto optimization with small data by learning across common objective spaces" @default.
- W4376643672 cites W1502922572 @default.
- W4376643672 cites W1603035390 @default.
- W4376643672 cites W1967157470 @default.
- W4376643672 cites W2081989110 @default.
- W4376643672 cites W2090392688 @default.
- W4376643672 cites W2102365077 @default.
- W4376643672 cites W2125308499 @default.
- W4376643672 cites W2126105956 @default.
- W4376643672 cites W2142844925 @default.
- W4376643672 cites W2143381319 @default.
- W4376643672 cites W2146216407 @default.
- W4376643672 cites W224959492 @default.
- W4376643672 cites W2399429427 @default.
- W4376643672 cites W2410677328 @default.
- W4376643672 cites W2527707023 @default.
- W4376643672 cites W2571941702 @default.
- W4376643672 cites W2616100520 @default.
- W4376643672 cites W2752084069 @default.
- W4376643672 cites W2770581177 @default.
- W4376643672 cites W2773474358 @default.
- W4376643672 cites W2793006007 @default.
- W4376643672 cites W2903640311 @default.
- W4376643672 cites W2907059569 @default.
- W4376643672 cites W2922089800 @default.
- W4376643672 cites W2940676189 @default.
- W4376643672 cites W2942148196 @default.
- W4376643672 cites W2966266966 @default.
- W4376643672 cites W3000508506 @default.
- W4376643672 cites W3002230404 @default.
- W4376643672 cites W3008294184 @default.
- W4376643672 cites W3011855308 @default.
- W4376643672 cites W3014543554 @default.
- W4376643672 cites W3014601019 @default.
- W4376643672 cites W3021613070 @default.
- W4376643672 cites W3082696595 @default.
- W4376643672 cites W3094394390 @default.
- W4376643672 cites W3105444733 @default.
- W4376643672 cites W3137454650 @default.
- W4376643672 cites W3165370839 @default.
- W4376643672 cites W3211644589 @default.
- W4376643672 cites W4205232801 @default.
- W4376643672 cites W4206212643 @default.
- W4376643672 cites W4229376774 @default.
- W4376643672 cites W4307037670 @default.
- W4376643672 doi "https://doi.org/10.1038/s41598-023-33414-6" @default.
- W4376643672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37188695" @default.
- W4376643672 hasPublicationYear "2023" @default.
- W4376643672 type Work @default.
- W4376643672 citedByCount "0" @default.
- W4376643672 crossrefType "journal-article" @default.
- W4376643672 hasAuthorship W4376643672A5002694277 @default.
- W4376643672 hasAuthorship W4376643672A5025294714 @default.
- W4376643672 hasAuthorship W4376643672A5036928886 @default.
- W4376643672 hasAuthorship W4376643672A5041091856 @default.
- W4376643672 hasAuthorship W4376643672A5046611833 @default.
- W4376643672 hasAuthorship W4376643672A5060723344 @default.
- W4376643672 hasBestOaLocation W43766436721 @default.
- W4376643672 hasConcept C111030470 @default.
- W4376643672 hasConcept C119857082 @default.
- W4376643672 hasConcept C124101348 @default.
- W4376643672 hasConcept C126255220 @default.
- W4376643672 hasConcept C13280743 @default.
- W4376643672 hasConcept C137635306 @default.
- W4376643672 hasConcept C154945302 @default.
- W4376643672 hasConcept C162324750 @default.
- W4376643672 hasConcept C177264268 @default.
- W4376643672 hasConcept C185798385 @default.
- W4376643672 hasConcept C187736073 @default.
- W4376643672 hasConcept C199360897 @default.
- W4376643672 hasConcept C205649164 @default.
- W4376643672 hasConcept C2780451532 @default.
- W4376643672 hasConcept C33923547 @default.
- W4376643672 hasConcept C41008148 @default.
- W4376643672 hasConcept C68781425 @default.
- W4376643672 hasConceptScore W4376643672C111030470 @default.
- W4376643672 hasConceptScore W4376643672C119857082 @default.
- W4376643672 hasConceptScore W4376643672C124101348 @default.
- W4376643672 hasConceptScore W4376643672C126255220 @default.
- W4376643672 hasConceptScore W4376643672C13280743 @default.
- W4376643672 hasConceptScore W4376643672C137635306 @default.
- W4376643672 hasConceptScore W4376643672C154945302 @default.
- W4376643672 hasConceptScore W4376643672C162324750 @default.
- W4376643672 hasConceptScore W4376643672C177264268 @default.
- W4376643672 hasConceptScore W4376643672C185798385 @default.
- W4376643672 hasConceptScore W4376643672C187736073 @default.
- W4376643672 hasConceptScore W4376643672C199360897 @default.
- W4376643672 hasConceptScore W4376643672C205649164 @default.
- W4376643672 hasConceptScore W4376643672C2780451532 @default.
- W4376643672 hasConceptScore W4376643672C33923547 @default.