Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376645304> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4376645304 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> An ensemble of three-dimensional ensemble-variational (En-3DEnVar) data assimilations is demonstrated with the Joint Effort for Data assimilation Integration (JEDI) with the Model for Prediction Across Scales – Atmosphere (MPAS-A) (i.e., JEDI-MPAS). Basic software building blocks are reused from previously presented deterministic 3DEnVar functionality, and combined with a formal experimental workflow manager in MPAS-Workflow. En-3DEnVar is used to produce an 80-member ensemble of analyses, which are cycled with ensemble forecasts in a 1-month experiment. The ensemble forecasts approximate a purely flow-dependent background error covariance (BEC) at each analysis time. The En-3DEnVar BECs and prior ensemble mean forecast errors are compared to those produced by a similar experiment that uses the Data Assimilation Research Testbed (DART) Ensemble Adjustment Kalman Filter (EAKF). The experiment using En-3DEnVar produces similar ensemble spread to and slightly smaller errors than the EAKF. The ensemble forecasts initialized from En-3DEnVar and EAKF analyses are used as BECs in deterministic cycling 3DEnVar experiments, which are compared to a control experiment that uses 20-member MPAS-A forecasts initialized from Global Ensemble Forecast System (GEFS) initial conditions. The experimental ensembles achieve mostly equivalent or better performance than the off-the-shelf ensemble system in this deterministic cycling setting; although, there are many obvious differences in configuration between GEFS and the two MPAS ensemble systems. An additional experiment that uses hybrid 3DEnVar, which combines the En-3DEnVar ensemble BEC with a climatological BEC, increases tropospheric forecast quality compared to the corresponding pure 3DEnVar experiment. The JEDI-MPAS En-3DEnVar is technically working and useful for future research studies. Tuning of observation errors and spread is needed to improve performance and several algorithmic advancements are needed to improve computational efficiency for larger-scale applications." @default.
- W4376645304 created "2023-05-17" @default.
- W4376645304 date "2023-05-16" @default.
- W4376645304 modified "2023-10-14" @default.
- W4376645304 title "Comment on gmd-2023-54" @default.
- W4376645304 doi "https://doi.org/10.5194/gmd-2023-54-rc1" @default.
- W4376645304 hasPublicationYear "2023" @default.
- W4376645304 type Work @default.
- W4376645304 citedByCount "0" @default.
- W4376645304 crossrefType "peer-review" @default.
- W4376645304 hasBestOaLocation W43766453041 @default.
- W4376645304 hasConcept C105795698 @default.
- W4376645304 hasConcept C119898033 @default.
- W4376645304 hasConcept C121332964 @default.
- W4376645304 hasConcept C127313418 @default.
- W4376645304 hasConcept C153294291 @default.
- W4376645304 hasConcept C154945302 @default.
- W4376645304 hasConcept C157286648 @default.
- W4376645304 hasConcept C197640229 @default.
- W4376645304 hasConcept C206833254 @default.
- W4376645304 hasConcept C24552861 @default.
- W4376645304 hasConcept C33923547 @default.
- W4376645304 hasConcept C39432304 @default.
- W4376645304 hasConcept C41008148 @default.
- W4376645304 hasConcept C45942800 @default.
- W4376645304 hasConcept C49204034 @default.
- W4376645304 hasConcept C51865526 @default.
- W4376645304 hasConcept C79334102 @default.
- W4376645304 hasConceptScore W4376645304C105795698 @default.
- W4376645304 hasConceptScore W4376645304C119898033 @default.
- W4376645304 hasConceptScore W4376645304C121332964 @default.
- W4376645304 hasConceptScore W4376645304C127313418 @default.
- W4376645304 hasConceptScore W4376645304C153294291 @default.
- W4376645304 hasConceptScore W4376645304C154945302 @default.
- W4376645304 hasConceptScore W4376645304C157286648 @default.
- W4376645304 hasConceptScore W4376645304C197640229 @default.
- W4376645304 hasConceptScore W4376645304C206833254 @default.
- W4376645304 hasConceptScore W4376645304C24552861 @default.
- W4376645304 hasConceptScore W4376645304C33923547 @default.
- W4376645304 hasConceptScore W4376645304C39432304 @default.
- W4376645304 hasConceptScore W4376645304C41008148 @default.
- W4376645304 hasConceptScore W4376645304C45942800 @default.
- W4376645304 hasConceptScore W4376645304C49204034 @default.
- W4376645304 hasConceptScore W4376645304C51865526 @default.
- W4376645304 hasConceptScore W4376645304C79334102 @default.
- W4376645304 hasLocation W43766453041 @default.
- W4376645304 hasOpenAccess W4376645304 @default.
- W4376645304 hasPrimaryLocation W43766453041 @default.
- W4376645304 hasRelatedWork W2101981609 @default.
- W4376645304 hasRelatedWork W2160343576 @default.
- W4376645304 hasRelatedWork W2179584279 @default.
- W4376645304 hasRelatedWork W2182570291 @default.
- W4376645304 hasRelatedWork W2240479891 @default.
- W4376645304 hasRelatedWork W2378684402 @default.
- W4376645304 hasRelatedWork W2592766532 @default.
- W4376645304 hasRelatedWork W2597202463 @default.
- W4376645304 hasRelatedWork W2950655146 @default.
- W4376645304 hasRelatedWork W4313648446 @default.
- W4376645304 isParatext "false" @default.
- W4376645304 isRetracted "false" @default.
- W4376645304 workType "peer-review" @default.