Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376645670> ?p ?o ?g. }
- W4376645670 endingPage "707" @default.
- W4376645670 startingPage "673" @default.
- W4376645670 abstract "Abstract Software defect prediction (SDP) plays a vital role in enhancing the quality of software projects and reducing maintenance-based risks through the ability to detect defective software components. SDP refers to using historical defect data to construct a relationship between software metrics and defects via diverse methodologies. Several prediction models, such as machine learning (ML) and deep learning (DL), have been developed and adopted to recognize software module defects, and many methodologies and frameworks have been presented. Class imbalance is one of the most challenging problems these models face in binary classification. However, When the distribution of classes is imbalanced, the accuracy may be high, but the models cannot recognize data instances in the minority class, leading to weak classifications. So far, little research has been done in the previous studies that address the problem of class imbalance in SDP. In this study, the data sampling method is introduced to address the class imbalance problem and improve the performance of ML models in SDP. The proposed approach is based on a convolutional neural network (CNN) and gated recurrent unit (GRU) combined with a synthetic minority oversampling technique plus the Tomek link (SMOTE Tomek) to predict software defects. To establish the efficiency of the proposed models, the experiments have been conducted on benchmark datasets obtained from the PROMISE repository. The experimental results have been compared and evaluated in terms of accuracy, precision, recall, F-measure, Matthew’s correlation coefficient (MCC), the area under the ROC curve (AUC), the area under the precision-recall curve (AUCPR), and mean square error (MSE). The experimental results showed that the proposed models predict the software defects more effectively on the balanced datasets than the original datasets, with an improvement of up to 19% for the CNN model and 24% for the GRU model in terms of AUC. We compared our proposed approach with existing SDP approaches based on several standard performance measures. The comparison results demonstrated that the proposed approach significantly outperforms existing state-of-the-art SDP approaches on most datasets." @default.
- W4376645670 created "2023-05-17" @default.
- W4376645670 creator A5029099824 @default.
- W4376645670 creator A5087326689 @default.
- W4376645670 date "2023-05-16" @default.
- W4376645670 modified "2023-10-13" @default.
- W4376645670 title "A novel approach for software defect prediction using CNN and GRU based on SMOTE Tomek method" @default.
- W4376645670 cites W1526710119 @default.
- W4376645670 cites W2064330644 @default.
- W4376645670 cites W2137822999 @default.
- W4376645670 cites W2149007344 @default.
- W4376645670 cites W2312398278 @default.
- W4376645670 cites W2587314106 @default.
- W4376645670 cites W2729231325 @default.
- W4376645670 cites W2743316948 @default.
- W4376645670 cites W2772617084 @default.
- W4376645670 cites W2781049225 @default.
- W4376645670 cites W2789977158 @default.
- W4376645670 cites W2791812915 @default.
- W4376645670 cites W2894923858 @default.
- W4376645670 cites W2896983410 @default.
- W4376645670 cites W2906264889 @default.
- W4376645670 cites W2915514405 @default.
- W4376645670 cites W2922466793 @default.
- W4376645670 cites W2937381238 @default.
- W4376645670 cites W2940943652 @default.
- W4376645670 cites W2945339223 @default.
- W4376645670 cites W2945699300 @default.
- W4376645670 cites W2955114891 @default.
- W4376645670 cites W2955224058 @default.
- W4376645670 cites W2955518678 @default.
- W4376645670 cites W2983209690 @default.
- W4376645670 cites W2994099454 @default.
- W4376645670 cites W2998024052 @default.
- W4376645670 cites W3014832129 @default.
- W4376645670 cites W3015088739 @default.
- W4376645670 cites W3015641005 @default.
- W4376645670 cites W3015926863 @default.
- W4376645670 cites W3016122787 @default.
- W4376645670 cites W3016590323 @default.
- W4376645670 cites W3080295194 @default.
- W4376645670 cites W3088111612 @default.
- W4376645670 cites W3101280475 @default.
- W4376645670 cites W3135553079 @default.
- W4376645670 cites W3174740339 @default.
- W4376645670 cites W3195380442 @default.
- W4376645670 cites W3212106560 @default.
- W4376645670 cites W4224323533 @default.
- W4376645670 cites W4304587309 @default.
- W4376645670 cites W4317346923 @default.
- W4376645670 doi "https://doi.org/10.1007/s10844-023-00793-1" @default.
- W4376645670 hasPublicationYear "2023" @default.
- W4376645670 type Work @default.
- W4376645670 citedByCount "1" @default.
- W4376645670 crossrefType "journal-article" @default.
- W4376645670 hasAuthorship W4376645670A5029099824 @default.
- W4376645670 hasAuthorship W4376645670A5087326689 @default.
- W4376645670 hasBestOaLocation W43766456701 @default.
- W4376645670 hasConcept C119857082 @default.
- W4376645670 hasConcept C12267149 @default.
- W4376645670 hasConcept C124101348 @default.
- W4376645670 hasConcept C13280743 @default.
- W4376645670 hasConcept C154945302 @default.
- W4376645670 hasConcept C185798385 @default.
- W4376645670 hasConcept C197323446 @default.
- W4376645670 hasConcept C199360897 @default.
- W4376645670 hasConcept C205649164 @default.
- W4376645670 hasConcept C2776257435 @default.
- W4376645670 hasConcept C2777212361 @default.
- W4376645670 hasConcept C2777904410 @default.
- W4376645670 hasConcept C2780801425 @default.
- W4376645670 hasConcept C31258907 @default.
- W4376645670 hasConcept C41008148 @default.
- W4376645670 hasConcept C66905080 @default.
- W4376645670 hasConcept C81363708 @default.
- W4376645670 hasConcept C81669768 @default.
- W4376645670 hasConceptScore W4376645670C119857082 @default.
- W4376645670 hasConceptScore W4376645670C12267149 @default.
- W4376645670 hasConceptScore W4376645670C124101348 @default.
- W4376645670 hasConceptScore W4376645670C13280743 @default.
- W4376645670 hasConceptScore W4376645670C154945302 @default.
- W4376645670 hasConceptScore W4376645670C185798385 @default.
- W4376645670 hasConceptScore W4376645670C197323446 @default.
- W4376645670 hasConceptScore W4376645670C199360897 @default.
- W4376645670 hasConceptScore W4376645670C205649164 @default.
- W4376645670 hasConceptScore W4376645670C2776257435 @default.
- W4376645670 hasConceptScore W4376645670C2777212361 @default.
- W4376645670 hasConceptScore W4376645670C2777904410 @default.
- W4376645670 hasConceptScore W4376645670C2780801425 @default.
- W4376645670 hasConceptScore W4376645670C31258907 @default.
- W4376645670 hasConceptScore W4376645670C41008148 @default.
- W4376645670 hasConceptScore W4376645670C66905080 @default.
- W4376645670 hasConceptScore W4376645670C81363708 @default.
- W4376645670 hasConceptScore W4376645670C81669768 @default.
- W4376645670 hasIssue "3" @default.
- W4376645670 hasLocation W43766456701 @default.
- W4376645670 hasLocation W43766456702 @default.
- W4376645670 hasOpenAccess W4376645670 @default.