Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376650149> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4376650149 endingPage "128" @default.
- W4376650149 startingPage "114" @default.
- W4376650149 abstract "Lung cancer is a form of carcinoma that develops as a result of aberrant cell growth or mutation in the lungs. Most of the time, this occurs due to daily exposure to hazardous chemicals. However, this is not the only cause of lung cancer; additional factors include smoking, indirect smoke exposure, family medical history, and so on. Cancer cells, unlike normal cells, proliferate inexorably and cluster together to create masses or tumors. The symptoms of this disease do not appear until cancer cells have moved to other parts of the body and are interfering with the healthy functioning of other organs. As a solution to this problem, Machine Learning (ML) algorithms are used to diagnose lung cancer. The image datasets for this study were obtained from Kaggle. The images are preprocessed using various approaches before being used to train the image model. Texture-based Feature Extraction (FE) algorithms such as Generalized Low-Rank Models (GLRM) and Gray-level co-occurrence matrix (GLCM) are then used to extract the essential characteristics from the image dataset. To develop a model, the collected features are given into ML classifiers like the Support Vector Machine (SVM) and the k-nearest neighbor's algorithm (k-NN).<br>" @default.
- W4376650149 created "2023-05-17" @default.
- W4376650149 creator A5009203005 @default.
- W4376650149 creator A5011126952 @default.
- W4376650149 creator A5029984282 @default.
- W4376650149 creator A5031832073 @default.
- W4376650149 creator A5052090758 @default.
- W4376650149 creator A5076202977 @default.
- W4376650149 date "2023-04-10" @default.
- W4376650149 modified "2023-09-26" @default.
- W4376650149 title "Texture Analysis-based Features Extraction & Classification of Lung Cancer Using Machine Learning" @default.
- W4376650149 cites W2085672498 @default.
- W4376650149 cites W2093160946 @default.
- W4376650149 cites W2136132422 @default.
- W4376650149 cites W2553942279 @default.
- W4376650149 cites W2783620100 @default.
- W4376650149 cites W2802703689 @default.
- W4376650149 cites W2888101298 @default.
- W4376650149 cites W2940574669 @default.
- W4376650149 cites W2994492361 @default.
- W4376650149 cites W2998759285 @default.
- W4376650149 cites W3139482921 @default.
- W4376650149 cites W3165223959 @default.
- W4376650149 doi "https://doi.org/10.2174/9789815136531123010010" @default.
- W4376650149 hasPublicationYear "2023" @default.
- W4376650149 type Work @default.
- W4376650149 citedByCount "0" @default.
- W4376650149 crossrefType "book-chapter" @default.
- W4376650149 hasAuthorship W4376650149A5009203005 @default.
- W4376650149 hasAuthorship W4376650149A5011126952 @default.
- W4376650149 hasAuthorship W4376650149A5029984282 @default.
- W4376650149 hasAuthorship W4376650149A5031832073 @default.
- W4376650149 hasAuthorship W4376650149A5052090758 @default.
- W4376650149 hasAuthorship W4376650149A5076202977 @default.
- W4376650149 hasConcept C115961682 @default.
- W4376650149 hasConcept C119857082 @default.
- W4376650149 hasConcept C121608353 @default.
- W4376650149 hasConcept C12267149 @default.
- W4376650149 hasConcept C126322002 @default.
- W4376650149 hasConcept C142724271 @default.
- W4376650149 hasConcept C153180895 @default.
- W4376650149 hasConcept C154945302 @default.
- W4376650149 hasConcept C2776256026 @default.
- W4376650149 hasConcept C2985861186 @default.
- W4376650149 hasConcept C41008148 @default.
- W4376650149 hasConcept C52622490 @default.
- W4376650149 hasConcept C71924100 @default.
- W4376650149 hasConceptScore W4376650149C115961682 @default.
- W4376650149 hasConceptScore W4376650149C119857082 @default.
- W4376650149 hasConceptScore W4376650149C121608353 @default.
- W4376650149 hasConceptScore W4376650149C12267149 @default.
- W4376650149 hasConceptScore W4376650149C126322002 @default.
- W4376650149 hasConceptScore W4376650149C142724271 @default.
- W4376650149 hasConceptScore W4376650149C153180895 @default.
- W4376650149 hasConceptScore W4376650149C154945302 @default.
- W4376650149 hasConceptScore W4376650149C2776256026 @default.
- W4376650149 hasConceptScore W4376650149C2985861186 @default.
- W4376650149 hasConceptScore W4376650149C41008148 @default.
- W4376650149 hasConceptScore W4376650149C52622490 @default.
- W4376650149 hasConceptScore W4376650149C71924100 @default.
- W4376650149 hasLocation W43766501491 @default.
- W4376650149 hasOpenAccess W4376650149 @default.
- W4376650149 hasPrimaryLocation W43766501491 @default.
- W4376650149 hasRelatedWork W2068539145 @default.
- W4376650149 hasRelatedWork W2126100045 @default.
- W4376650149 hasRelatedWork W2241457321 @default.
- W4376650149 hasRelatedWork W2277432408 @default.
- W4376650149 hasRelatedWork W2336974148 @default.
- W4376650149 hasRelatedWork W2381773606 @default.
- W4376650149 hasRelatedWork W2902466377 @default.
- W4376650149 hasRelatedWork W4225360039 @default.
- W4376650149 hasRelatedWork W2187500075 @default.
- W4376650149 hasRelatedWork W2345184372 @default.
- W4376650149 isParatext "false" @default.
- W4376650149 isRetracted "false" @default.
- W4376650149 workType "book-chapter" @default.