Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376650501> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4376650501 endingPage "107205" @default.
- W4376650501 startingPage "107205" @default.
- W4376650501 abstract "Radioactive contamination of forests by long-lived radionuclides from nuclear accidents such as Chernobyl and Fukushima continues to be studied and quantitatively modeled. Whereas traditional statistical and machine learning (ML) techniques generate predictions by focusing on correlations between variables, quantification of causal effects of radioactivity deposition levels on contamination of plant tissues represents a more fundamental and relevant research goal. Modeling of cause-and-effect relationships is advantageous over standard predictive modeling, particularly by improving the generalizability of results to other situations, where the distributions of variables, including potential confounders, differ from those in the training data. Here we used the state-of-the-art causal forest (CF) algorithm to quantify the causal effect of 137Cs land contamination after the Fukushima accident on 137Cs activity concentrations in the wood of four common Japanese forest tree species: Hinoki cypress (Chamaecyparis obtusa), konara oak (Quercus serrata), red pine (Pinus densiflora), and Sugi cedar (Cryptomeria japonica). We estimated the average causal effect for the population, quantified how it was influenced by other environmental variables, and produced effect estimates at the individual level. The estimated causal effect was quite robust to various refutation methods, and was negatively influenced by high mean annual precipitation, elevation, and time after the accident. Wood subtype (e.g. sapwood, heartwood) and tree species made smaller contributions to the causal effect. We believe that causal ML techniques have promising potential in radiation ecology and can usefully expand the toolkit of modeling approaches available to researchers in this field." @default.
- W4376650501 created "2023-05-17" @default.
- W4376650501 creator A5044358814 @default.
- W4376650501 date "2023-08-01" @default.
- W4376650501 modified "2023-10-18" @default.
- W4376650501 title "Analysis of causal effects of 137Cs deposition on 137Cs concentrations in trees after the Fukushima accident using machine learning" @default.
- W4376650501 cites W1980766464 @default.
- W4376650501 cites W1990273300 @default.
- W4376650501 cites W2086363828 @default.
- W4376650501 cites W2200889193 @default.
- W4376650501 cites W2208550830 @default.
- W4376650501 cites W2583860259 @default.
- W4376650501 cites W2906579876 @default.
- W4376650501 cites W2911964244 @default.
- W4376650501 cites W2917286209 @default.
- W4376650501 cites W2951308596 @default.
- W4376650501 cites W3094948551 @default.
- W4376650501 cites W3115311328 @default.
- W4376650501 cites W3158582929 @default.
- W4376650501 cites W3172039697 @default.
- W4376650501 cites W3212201435 @default.
- W4376650501 cites W3216594693 @default.
- W4376650501 cites W4281723409 @default.
- W4376650501 cites W4288442502 @default.
- W4376650501 cites W4315621429 @default.
- W4376650501 cites W4319655772 @default.
- W4376650501 cites W4321509455 @default.
- W4376650501 doi "https://doi.org/10.1016/j.jenvrad.2023.107205" @default.
- W4376650501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37196555" @default.
- W4376650501 hasPublicationYear "2023" @default.
- W4376650501 type Work @default.
- W4376650501 citedByCount "2" @default.
- W4376650501 countsByYear W43766505012023 @default.
- W4376650501 crossrefType "journal-article" @default.
- W4376650501 hasAuthorship W4376650501A5044358814 @default.
- W4376650501 hasConcept C144027150 @default.
- W4376650501 hasConcept C18903297 @default.
- W4376650501 hasConcept C2776621788 @default.
- W4376650501 hasConcept C2779409272 @default.
- W4376650501 hasConcept C2779676560 @default.
- W4376650501 hasConcept C2780319752 @default.
- W4376650501 hasConcept C39432304 @default.
- W4376650501 hasConcept C59822182 @default.
- W4376650501 hasConcept C86803240 @default.
- W4376650501 hasConceptScore W4376650501C144027150 @default.
- W4376650501 hasConceptScore W4376650501C18903297 @default.
- W4376650501 hasConceptScore W4376650501C2776621788 @default.
- W4376650501 hasConceptScore W4376650501C2779409272 @default.
- W4376650501 hasConceptScore W4376650501C2779676560 @default.
- W4376650501 hasConceptScore W4376650501C2780319752 @default.
- W4376650501 hasConceptScore W4376650501C39432304 @default.
- W4376650501 hasConceptScore W4376650501C59822182 @default.
- W4376650501 hasConceptScore W4376650501C86803240 @default.
- W4376650501 hasLocation W43766505011 @default.
- W4376650501 hasLocation W43766505012 @default.
- W4376650501 hasOpenAccess W4376650501 @default.
- W4376650501 hasPrimaryLocation W43766505011 @default.
- W4376650501 hasRelatedWork W1967360966 @default.
- W4376650501 hasRelatedWork W2488187903 @default.
- W4376650501 hasRelatedWork W2508139455 @default.
- W4376650501 hasRelatedWork W2559198575 @default.
- W4376650501 hasRelatedWork W2775584537 @default.
- W4376650501 hasRelatedWork W2916463334 @default.
- W4376650501 hasRelatedWork W3119246977 @default.
- W4376650501 hasRelatedWork W354544180 @default.
- W4376650501 hasRelatedWork W659217560 @default.
- W4376650501 hasRelatedWork W26441531 @default.
- W4376650501 hasVolume "264" @default.
- W4376650501 isParatext "false" @default.
- W4376650501 isRetracted "false" @default.
- W4376650501 workType "article" @default.