Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376651192> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4376651192 endingPage "115543" @default.
- W4376651192 startingPage "115543" @default.
- W4376651192 abstract "Identifying optimum processing conditions is necessary for new material development. The flow curves can be used to develop the processing map for an alloy. The current study trained multiple machine learning models such as Random Forest Regressor (RFR), K Nearest Neighbors (KNN), Extra Tree Regressor (ETR) and Artificial Neural Network (ANN) to predict the flow behaviour of the material. The testing R2 fit score of more than 0.99 was obtained for all four algorithms, and trained models were used to generate the flow curves at various temperature strain rate combinations for CoCrFeNiTa0.395 eutectic high entropy alloy. A processing map was developed using the results from ANN and validated with the experimental microstructure observations." @default.
- W4376651192 created "2023-05-17" @default.
- W4376651192 creator A5006528059 @default.
- W4376651192 creator A5006773506 @default.
- W4376651192 creator A5012107529 @default.
- W4376651192 creator A5030124421 @default.
- W4376651192 creator A5072205088 @default.
- W4376651192 date "2023-09-01" @default.
- W4376651192 modified "2023-09-30" @default.
- W4376651192 title "Machine learning enabled processing map generation for high-entropy alloy" @default.
- W4376651192 cites W1972058487 @default.
- W4376651192 cites W2004113596 @default.
- W4376651192 cites W2103109670 @default.
- W4376651192 cites W2332006047 @default.
- W4376651192 cites W2408247608 @default.
- W4376651192 cites W2950904464 @default.
- W4376651192 cites W2953532394 @default.
- W4376651192 cites W3027506783 @default.
- W4376651192 cites W3084235614 @default.
- W4376651192 cites W3086050818 @default.
- W4376651192 cites W3104307915 @default.
- W4376651192 cites W3130962589 @default.
- W4376651192 cites W3131102893 @default.
- W4376651192 cites W3186633606 @default.
- W4376651192 cites W4207027245 @default.
- W4376651192 cites W4210498013 @default.
- W4376651192 cites W4220874667 @default.
- W4376651192 cites W4221024571 @default.
- W4376651192 cites W4221029397 @default.
- W4376651192 cites W4225380707 @default.
- W4376651192 cites W4225746648 @default.
- W4376651192 cites W4290091033 @default.
- W4376651192 cites W4306986167 @default.
- W4376651192 cites W4307266408 @default.
- W4376651192 doi "https://doi.org/10.1016/j.scriptamat.2023.115543" @default.
- W4376651192 hasPublicationYear "2023" @default.
- W4376651192 type Work @default.
- W4376651192 citedByCount "2" @default.
- W4376651192 countsByYear W43766511922023 @default.
- W4376651192 crossrefType "journal-article" @default.
- W4376651192 hasAuthorship W4376651192A5006528059 @default.
- W4376651192 hasAuthorship W4376651192A5006773506 @default.
- W4376651192 hasAuthorship W4376651192A5012107529 @default.
- W4376651192 hasAuthorship W4376651192A5030124421 @default.
- W4376651192 hasAuthorship W4376651192A5072205088 @default.
- W4376651192 hasConcept C106301342 @default.
- W4376651192 hasConcept C119857082 @default.
- W4376651192 hasConcept C121332964 @default.
- W4376651192 hasConcept C154945302 @default.
- W4376651192 hasConcept C169258074 @default.
- W4376651192 hasConcept C18168003 @default.
- W4376651192 hasConcept C191897082 @default.
- W4376651192 hasConcept C192562407 @default.
- W4376651192 hasConcept C2780026712 @default.
- W4376651192 hasConcept C41008148 @default.
- W4376651192 hasConcept C50644808 @default.
- W4376651192 hasConcept C87976508 @default.
- W4376651192 hasConcept C97355855 @default.
- W4376651192 hasConceptScore W4376651192C106301342 @default.
- W4376651192 hasConceptScore W4376651192C119857082 @default.
- W4376651192 hasConceptScore W4376651192C121332964 @default.
- W4376651192 hasConceptScore W4376651192C154945302 @default.
- W4376651192 hasConceptScore W4376651192C169258074 @default.
- W4376651192 hasConceptScore W4376651192C18168003 @default.
- W4376651192 hasConceptScore W4376651192C191897082 @default.
- W4376651192 hasConceptScore W4376651192C192562407 @default.
- W4376651192 hasConceptScore W4376651192C2780026712 @default.
- W4376651192 hasConceptScore W4376651192C41008148 @default.
- W4376651192 hasConceptScore W4376651192C50644808 @default.
- W4376651192 hasConceptScore W4376651192C87976508 @default.
- W4376651192 hasConceptScore W4376651192C97355855 @default.
- W4376651192 hasFunder F4320320719 @default.
- W4376651192 hasFunder F4320334771 @default.
- W4376651192 hasLocation W43766511921 @default.
- W4376651192 hasOpenAccess W4376651192 @default.
- W4376651192 hasPrimaryLocation W43766511921 @default.
- W4376651192 hasRelatedWork W2010733322 @default.
- W4376651192 hasRelatedWork W2013585627 @default.
- W4376651192 hasRelatedWork W2014863266 @default.
- W4376651192 hasRelatedWork W2108165564 @default.
- W4376651192 hasRelatedWork W2146788481 @default.
- W4376651192 hasRelatedWork W2371418371 @default.
- W4376651192 hasRelatedWork W2388214750 @default.
- W4376651192 hasRelatedWork W2389425217 @default.
- W4376651192 hasRelatedWork W2391741758 @default.
- W4376651192 hasRelatedWork W4220757755 @default.
- W4376651192 hasVolume "234" @default.
- W4376651192 isParatext "false" @default.
- W4376651192 isRetracted "false" @default.
- W4376651192 workType "article" @default.