Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376870215> ?p ?o ?g. }
- W4376870215 endingPage "106413" @default.
- W4376870215 startingPage "106413" @default.
- W4376870215 abstract "Due to the remarkable ability of Deep learning (DL) to abstract hidden information, it has been proven to be a powerful tool in many tasks related to the design of metamaterials. DL-aided design techniques can be generally categorized into two types, including forward designs, which are training surrogate models to accelerate the simulation process, and inverse design, which uses inverse modeling techniques to generate the design that satisfies the corresponding requirement. Although generative models have a unique capability to generate multiple designs instantly with random information, they often underperform in accuracy compared to designs based on optimization techniques. In this paper, a hybrid design framework combining the advantages of both DL forward design and the inverse design based on the mixture density network (MDN) is proposed. Then the proposed framework is implemented for the inverse design of S-shaped perforated auxetic metamaterial. The hybrid design framework inherited the one-to-many mapping capability of MDN and has great capability of generating designs with designated mechanical properties at less than 10% relative errors, in most design scenarios (over 95% in the test set), at one to two orders of magnitude less computational cost compared to optimization-based forward design." @default.
- W4376870215 created "2023-05-18" @default.
- W4376870215 creator A5032678141 @default.
- W4376870215 creator A5048145318 @default.
- W4376870215 creator A5049489916 @default.
- W4376870215 creator A5065163498 @default.
- W4376870215 creator A5070626046 @default.
- W4376870215 date "2023-08-01" @default.
- W4376870215 modified "2023-10-16" @default.
- W4376870215 title "A hybrid deep learning approach for the design of 2D low porosity auxetic metamaterials" @default.
- W4376870215 cites W1985106971 @default.
- W4376870215 cites W2050341914 @default.
- W4376870215 cites W2060060505 @default.
- W4376870215 cites W2062774149 @default.
- W4376870215 cites W2069330528 @default.
- W4376870215 cites W2076751630 @default.
- W4376870215 cites W2148020016 @default.
- W4376870215 cites W2471681151 @default.
- W4376870215 cites W2569457803 @default.
- W4376870215 cites W2742835787 @default.
- W4376870215 cites W2748351779 @default.
- W4376870215 cites W2765811365 @default.
- W4376870215 cites W2766162919 @default.
- W4376870215 cites W2771021857 @default.
- W4376870215 cites W2777757755 @default.
- W4376870215 cites W2803281408 @default.
- W4376870215 cites W2803594690 @default.
- W4376870215 cites W2806536390 @default.
- W4376870215 cites W2807414605 @default.
- W4376870215 cites W2886111172 @default.
- W4376870215 cites W2914274640 @default.
- W4376870215 cites W2914973752 @default.
- W4376870215 cites W2922403949 @default.
- W4376870215 cites W2937016713 @default.
- W4376870215 cites W2943647772 @default.
- W4376870215 cites W2949257317 @default.
- W4376870215 cites W2952953259 @default.
- W4376870215 cites W2961314837 @default.
- W4376870215 cites W2962797490 @default.
- W4376870215 cites W2989293933 @default.
- W4376870215 cites W2991294993 @default.
- W4376870215 cites W2996601350 @default.
- W4376870215 cites W3004650610 @default.
- W4376870215 cites W3009111899 @default.
- W4376870215 cites W3022540061 @default.
- W4376870215 cites W3038057261 @default.
- W4376870215 cites W3082366755 @default.
- W4376870215 cites W3083947857 @default.
- W4376870215 cites W3095606665 @default.
- W4376870215 cites W3099853468 @default.
- W4376870215 cites W3100898792 @default.
- W4376870215 cites W3102673610 @default.
- W4376870215 cites W3105817532 @default.
- W4376870215 cites W3147754696 @default.
- W4376870215 cites W3162405355 @default.
- W4376870215 cites W3163384506 @default.
- W4376870215 cites W3168693657 @default.
- W4376870215 cites W3177857319 @default.
- W4376870215 cites W3205303957 @default.
- W4376870215 cites W3207792382 @default.
- W4376870215 cites W3210777470 @default.
- W4376870215 cites W3214439486 @default.
- W4376870215 cites W4200162864 @default.
- W4376870215 cites W4205156536 @default.
- W4376870215 cites W4243711516 @default.
- W4376870215 cites W4281742147 @default.
- W4376870215 cites W4290052300 @default.
- W4376870215 cites W4313315624 @default.
- W4376870215 doi "https://doi.org/10.1016/j.engappai.2023.106413" @default.
- W4376870215 hasPublicationYear "2023" @default.
- W4376870215 type Work @default.
- W4376870215 citedByCount "1" @default.
- W4376870215 countsByYear W43768702152023 @default.
- W4376870215 crossrefType "journal-article" @default.
- W4376870215 hasAuthorship W4376870215A5032678141 @default.
- W4376870215 hasAuthorship W4376870215A5048145318 @default.
- W4376870215 hasAuthorship W4376870215A5049489916 @default.
- W4376870215 hasAuthorship W4376870215A5065163498 @default.
- W4376870215 hasAuthorship W4376870215A5070626046 @default.
- W4376870215 hasConcept C110367647 @default.
- W4376870215 hasConcept C113775141 @default.
- W4376870215 hasConcept C119857082 @default.
- W4376870215 hasConcept C127413603 @default.
- W4376870215 hasConcept C131675550 @default.
- W4376870215 hasConcept C159985019 @default.
- W4376870215 hasConcept C177264268 @default.
- W4376870215 hasConcept C184408114 @default.
- W4376870215 hasConcept C186394612 @default.
- W4376870215 hasConcept C192562407 @default.
- W4376870215 hasConcept C199360897 @default.
- W4376870215 hasConcept C207467116 @default.
- W4376870215 hasConcept C2524010 @default.
- W4376870215 hasConcept C2778648169 @default.
- W4376870215 hasConcept C33923547 @default.
- W4376870215 hasConcept C34972735 @default.
- W4376870215 hasConcept C41008148 @default.
- W4376870215 hasConcept C49040817 @default.
- W4376870215 hasConcept C78519656 @default.