Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376870664> ?p ?o ?g. }
- W4376870664 endingPage "103949" @default.
- W4376870664 startingPage "103949" @default.
- W4376870664 abstract "Traditional manufacturing systems face a major transition challenge toward intelligent and sustainable manufacturing systems. Energy-efficient manufacturing has become one of the main focuses of this transition because of the high and critical consumption of energy for the production of many industrial sectors. To this aim, modeling Energy Consumption (EC) behavior is a primary step to monitor and reduce consumption. However, it requires a deep understanding of the system’s kinematic and dynamic behaviors. Hence, creating a model from scratch can be challenging, which may result in a model that does not correctly represent the real system. With the advancement of digital technologies, it is now possible to collect and analyze data from manufacturing systems in real-time. This opens the door to the possibility of modeling the energy consumption behavior of different machine states based on a data-driven approach and keeping the current energy consumption under control and monitored using real-time data from the equipment. Prior research has been conducted in the literature incorporating EC modeling into a Digital Twin (DT). However, the addressed issue remains an open challenge due to its complexity. The proposed methodology solves the lack of literature by proposing a methodology that makes the EC modeling within the reach of any researcher or practitioner in the field. The current paper proposes a data-driven methodology for integrating the EC model into Digital Twins. The methodology is based on measurements to identify different segments and sub-states of EC of production equipment, using techniques such as segmentation and regression. It relies on power absorption measurement of industrial equipment to generate EC related-parameters to be fed into the DT model to monitor the current operating condition of the physical system. This work contributes to the DT-based sustainable transition by allowing to monitor and quantitatively measure those parameters which could be controlled to reduce EC. A case study on an industrial robot is used to validate and assess the performance of the approach in a laboratory environment." @default.
- W4376870664 created "2023-05-18" @default.
- W4376870664 creator A5019535134 @default.
- W4376870664 creator A5019954173 @default.
- W4376870664 creator A5039793075 @default.
- W4376870664 creator A5071829921 @default.
- W4376870664 creator A5079984714 @default.
- W4376870664 date "2023-09-01" @default.
- W4376870664 modified "2023-10-01" @default.
- W4376870664 title "Toward Digital twin for sustainable manufacturing: A data-driven approach for energy consumption behavior model generation" @default.
- W4376870664 cites W1491957424 @default.
- W4376870664 cites W1971317756 @default.
- W4376870664 cites W2004518908 @default.
- W4376870664 cites W2010335050 @default.
- W4376870664 cites W2026744201 @default.
- W4376870664 cites W2036735799 @default.
- W4376870664 cites W2055821270 @default.
- W4376870664 cites W2090633749 @default.
- W4376870664 cites W2182264243 @default.
- W4376870664 cites W2190869063 @default.
- W4376870664 cites W2239317391 @default.
- W4376870664 cites W2297726003 @default.
- W4376870664 cites W2416210926 @default.
- W4376870664 cites W2561517067 @default.
- W4376870664 cites W2590878322 @default.
- W4376870664 cites W2605428484 @default.
- W4376870664 cites W2621041343 @default.
- W4376870664 cites W2768138847 @default.
- W4376870664 cites W2801706805 @default.
- W4376870664 cites W2803987737 @default.
- W4376870664 cites W2890904471 @default.
- W4376870664 cites W2909614971 @default.
- W4376870664 cites W2909693411 @default.
- W4376870664 cites W2910716232 @default.
- W4376870664 cites W2936343203 @default.
- W4376870664 cites W2943926435 @default.
- W4376870664 cites W2953213203 @default.
- W4376870664 cites W2953724613 @default.
- W4376870664 cites W2972584071 @default.
- W4376870664 cites W2998531464 @default.
- W4376870664 cites W3008823660 @default.
- W4376870664 cites W3035411635 @default.
- W4376870664 cites W3036353854 @default.
- W4376870664 cites W3125387313 @default.
- W4376870664 cites W3193422401 @default.
- W4376870664 cites W3203586625 @default.
- W4376870664 cites W4226239950 @default.
- W4376870664 cites W4239780819 @default.
- W4376870664 cites W574506127 @default.
- W4376870664 doi "https://doi.org/10.1016/j.compind.2023.103949" @default.
- W4376870664 hasPublicationYear "2023" @default.
- W4376870664 type Work @default.
- W4376870664 citedByCount "0" @default.
- W4376870664 crossrefType "journal-article" @default.
- W4376870664 hasAuthorship W4376870664A5019535134 @default.
- W4376870664 hasAuthorship W4376870664A5019954173 @default.
- W4376870664 hasAuthorship W4376870664A5039793075 @default.
- W4376870664 hasAuthorship W4376870664A5071829921 @default.
- W4376870664 hasAuthorship W4376870664A5079984714 @default.
- W4376870664 hasConcept C117671659 @default.
- W4376870664 hasConcept C119599485 @default.
- W4376870664 hasConcept C127413603 @default.
- W4376870664 hasConcept C13736549 @default.
- W4376870664 hasConcept C139719470 @default.
- W4376870664 hasConcept C144024400 @default.
- W4376870664 hasConcept C162324750 @default.
- W4376870664 hasConcept C201995342 @default.
- W4376870664 hasConcept C202444582 @default.
- W4376870664 hasConcept C2778348673 @default.
- W4376870664 hasConcept C2780165032 @default.
- W4376870664 hasConcept C30772137 @default.
- W4376870664 hasConcept C33923547 @default.
- W4376870664 hasConcept C36289849 @default.
- W4376870664 hasConcept C41008148 @default.
- W4376870664 hasConcept C9652623 @default.
- W4376870664 hasConceptScore W4376870664C117671659 @default.
- W4376870664 hasConceptScore W4376870664C119599485 @default.
- W4376870664 hasConceptScore W4376870664C127413603 @default.
- W4376870664 hasConceptScore W4376870664C13736549 @default.
- W4376870664 hasConceptScore W4376870664C139719470 @default.
- W4376870664 hasConceptScore W4376870664C144024400 @default.
- W4376870664 hasConceptScore W4376870664C162324750 @default.
- W4376870664 hasConceptScore W4376870664C201995342 @default.
- W4376870664 hasConceptScore W4376870664C202444582 @default.
- W4376870664 hasConceptScore W4376870664C2778348673 @default.
- W4376870664 hasConceptScore W4376870664C2780165032 @default.
- W4376870664 hasConceptScore W4376870664C30772137 @default.
- W4376870664 hasConceptScore W4376870664C33923547 @default.
- W4376870664 hasConceptScore W4376870664C36289849 @default.
- W4376870664 hasConceptScore W4376870664C41008148 @default.
- W4376870664 hasConceptScore W4376870664C9652623 @default.
- W4376870664 hasLocation W43768706641 @default.
- W4376870664 hasLocation W43768706642 @default.
- W4376870664 hasLocation W43768706643 @default.
- W4376870664 hasOpenAccess W4376870664 @default.
- W4376870664 hasPrimaryLocation W43768706641 @default.
- W4376870664 hasRelatedWork W1457512362 @default.
- W4376870664 hasRelatedWork W1860770248 @default.