Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376871657> ?p ?o ?g. }
- W4376871657 abstract "Nuclear magnetic resonance (NMR) spectroscopy is one of the indispensable techniques in chemistry because it enables us to obtain accurate information on the chemical, electronic, and dynamic properties of molecules. Computational simulation of the NMR spectra requires time-consuming density functional theory (DFT) calculations for an ensemble of molecular conformations. For large flexible molecules, it is considered too high-cost since it requires time-averaging of the instantaneous chemical shifts of each nuclear spin across the conformational space of molecules for NMR timescales. Here, we present a Gaussian process/deep kernel learning-based machine learning (ML) method for enabling us to predict, average in time, and analyze the instantaneous chemical shifts of conformations in the molecular dynamics trajectory. We demonstrate the use of the method by computing the averaged 1H and 13C chemical shifts of each nuclear spin of a trefoil knot molecule consisting of 24 para-connected benzene rings (240 atoms). By training ML model with the chemical shift data obtained from DFT calculations, we predicted chemical shifts for each conformation during dynamics. We were able to observe the merging of the time-averaged chemical shifts of each nuclear spin in a singlet 1H NMR peak and two 13C NMR peaks for the knot molecule, in agreement with experimental measurements. The unique feature of the presented method is the use of the learned low-dimensional deep kernel representation of local spin environments for comparing and analyzing the local chemical environment histories of spins during dynamics. It allowed us to identify two groups of protons in the knot molecule, which implies that the observed singlet 1H NMR peak could be composed of the contributions from protons with two distinct local chemical environments." @default.
- W4376871657 created "2023-05-18" @default.
- W4376871657 creator A5010482852 @default.
- W4376871657 creator A5012015397 @default.
- W4376871657 creator A5021148457 @default.
- W4376871657 creator A5066336593 @default.
- W4376871657 date "2023-05-17" @default.
- W4376871657 modified "2023-09-29" @default.
- W4376871657 title "NMR spectrum prediction for dynamic molecules by machine learning: A case study of trefoil knot molecule" @default.
- W4376871657 cites W1031578623 @default.
- W4376871657 cites W1991794210 @default.
- W4376871657 cites W1997231673 @default.
- W4376871657 cites W2015688756 @default.
- W4376871657 cites W2017196167 @default.
- W4376871657 cites W2022696619 @default.
- W4376871657 cites W2029413789 @default.
- W4376871657 cites W2035266068 @default.
- W4376871657 cites W2043528684 @default.
- W4376871657 cites W2045683699 @default.
- W4376871657 cites W2057477511 @default.
- W4376871657 cites W2067174909 @default.
- W4376871657 cites W2081693079 @default.
- W4376871657 cites W2083415705 @default.
- W4376871657 cites W2092077040 @default.
- W4376871657 cites W2092157292 @default.
- W4376871657 cites W2147993766 @default.
- W4376871657 cites W2327161550 @default.
- W4376871657 cites W2473180568 @default.
- W4376871657 cites W2585152223 @default.
- W4376871657 cites W2754303249 @default.
- W4376871657 cites W2805461540 @default.
- W4376871657 cites W2885800000 @default.
- W4376871657 cites W2904141086 @default.
- W4376871657 cites W2913034365 @default.
- W4376871657 cites W2957746479 @default.
- W4376871657 cites W2958839837 @default.
- W4376871657 cites W2976720228 @default.
- W4376871657 cites W3106310231 @default.
- W4376871657 cites W3163362221 @default.
- W4376871657 cites W3189164715 @default.
- W4376871657 cites W3207159821 @default.
- W4376871657 cites W4206471589 @default.
- W4376871657 cites W4221019844 @default.
- W4376871657 cites W4280615258 @default.
- W4376871657 cites W4285185855 @default.
- W4376871657 cites W4294316513 @default.
- W4376871657 cites W4296691693 @default.
- W4376871657 cites W4311647946 @default.
- W4376871657 doi "https://doi.org/10.1063/5.0147398" @default.
- W4376871657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37194718" @default.
- W4376871657 hasPublicationYear "2023" @default.
- W4376871657 type Work @default.
- W4376871657 citedByCount "0" @default.
- W4376871657 crossrefType "journal-article" @default.
- W4376871657 hasAuthorship W4376871657A5010482852 @default.
- W4376871657 hasAuthorship W4376871657A5012015397 @default.
- W4376871657 hasAuthorship W4376871657A5021148457 @default.
- W4376871657 hasAuthorship W4376871657A5066336593 @default.
- W4376871657 hasConcept C111429119 @default.
- W4376871657 hasConcept C121332964 @default.
- W4376871657 hasConcept C147597530 @default.
- W4376871657 hasConcept C147789679 @default.
- W4376871657 hasConcept C148093993 @default.
- W4376871657 hasConcept C152365726 @default.
- W4376871657 hasConcept C159467904 @default.
- W4376871657 hasConcept C159985019 @default.
- W4376871657 hasConcept C178790620 @default.
- W4376871657 hasConcept C185592680 @default.
- W4376871657 hasConcept C192562407 @default.
- W4376871657 hasConcept C2776122248 @default.
- W4376871657 hasConcept C2779863119 @default.
- W4376871657 hasConcept C2909749423 @default.
- W4376871657 hasConcept C32909587 @default.
- W4376871657 hasConcept C46141821 @default.
- W4376871657 hasConcept C59593255 @default.
- W4376871657 hasConcept C66974803 @default.
- W4376871657 hasConceptScore W4376871657C111429119 @default.
- W4376871657 hasConceptScore W4376871657C121332964 @default.
- W4376871657 hasConceptScore W4376871657C147597530 @default.
- W4376871657 hasConceptScore W4376871657C147789679 @default.
- W4376871657 hasConceptScore W4376871657C148093993 @default.
- W4376871657 hasConceptScore W4376871657C152365726 @default.
- W4376871657 hasConceptScore W4376871657C159467904 @default.
- W4376871657 hasConceptScore W4376871657C159985019 @default.
- W4376871657 hasConceptScore W4376871657C178790620 @default.
- W4376871657 hasConceptScore W4376871657C185592680 @default.
- W4376871657 hasConceptScore W4376871657C192562407 @default.
- W4376871657 hasConceptScore W4376871657C2776122248 @default.
- W4376871657 hasConceptScore W4376871657C2779863119 @default.
- W4376871657 hasConceptScore W4376871657C2909749423 @default.
- W4376871657 hasConceptScore W4376871657C32909587 @default.
- W4376871657 hasConceptScore W4376871657C46141821 @default.
- W4376871657 hasConceptScore W4376871657C59593255 @default.
- W4376871657 hasConceptScore W4376871657C66974803 @default.
- W4376871657 hasIssue "19" @default.
- W4376871657 hasLocation W43768716571 @default.
- W4376871657 hasLocation W43768716572 @default.
- W4376871657 hasOpenAccess W4376871657 @default.
- W4376871657 hasPrimaryLocation W43768716571 @default.
- W4376871657 hasRelatedWork W1486331608 @default.