Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376875148> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4376875148 endingPage "100292" @default.
- W4376875148 startingPage "100292" @default.
- W4376875148 abstract "Breast cancer, lung cancer, skin cancer, and blood malignancies such as leukemia and lymphoma are just a few instances of cancer, which is a collection of cells that proliferate uncontrollably within the body. Acute lymphoblastic leukemia is of one the significant form of malignancy. The hematologists frequently makes an oversight while determining a blood cancer diagnosis, which requires an excessive amount of time. Thus, this research reflects on a novel method for the grouping of the leukemia with the aid of the modern technologies like Machine Learning and Deep Learning. The proposed research pipeline is occupied into some interconnected parts like dataset building, feature extraction with pre-trained Convolutional Neural Network (CNN) architectures from each individual images of blood cells, and classification with the conventional classifiers. The dataset for this study is divided into two identical categories, Benign and Malignant, and then reshaped into four significant classes, each with three subtypes of malignant, namely, Benign, Early Pre-B, Pre-B, and Pro-B. The research first extracts the features from the individual images with CNN models and then transfers the extracted features to the features selections such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVC Feature Selectors along with two nature inspired algorithms like Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO). After that, research has applied the seven Machine Learning classifiers to accomplish the multi-class malignant classification. To assess the efficacy of the proposed architecture a set of experimental data have been enumerated and interpreted accordingly. The study discovered a maximum accuracy of 98.43% when solely using pre-trained CNN and classifiers. Nevertheless, after incorporating PSO and CSO, the proposed model achieved the highest accuracy of 99.84% by integrating the ResNet50 CNN architecture, SVC feature selector, and LR classifiers. Although the model has a higher accuracy rate, it does have some drawbacks. However, the proposed model may also be helpful for real-world blood cancer classification." @default.
- W4376875148 created "2023-05-18" @default.
- W4376875148 creator A5004155194 @default.
- W4376875148 creator A5036793684 @default.
- W4376875148 creator A5069272947 @default.
- W4376875148 creator A5072317896 @default.
- W4376875148 creator A5085563337 @default.
- W4376875148 creator A5091965205 @default.
- W4376875148 date "2023-07-01" @default.
- W4376875148 modified "2023-10-10" @default.
- W4376875148 title "Multiclass blood cancer classification using deep CNN with optimized features" @default.
- W4376875148 cites W2901421269 @default.
- W4376875148 cites W2988529604 @default.
- W4376875148 cites W3047490124 @default.
- W4376875148 cites W3081006209 @default.
- W4376875148 cites W3084741591 @default.
- W4376875148 cites W3135972681 @default.
- W4376875148 cites W3158276968 @default.
- W4376875148 doi "https://doi.org/10.1016/j.array.2023.100292" @default.
- W4376875148 hasPublicationYear "2023" @default.
- W4376875148 type Work @default.
- W4376875148 citedByCount "1" @default.
- W4376875148 crossrefType "journal-article" @default.
- W4376875148 hasAuthorship W4376875148A5004155194 @default.
- W4376875148 hasAuthorship W4376875148A5036793684 @default.
- W4376875148 hasAuthorship W4376875148A5069272947 @default.
- W4376875148 hasAuthorship W4376875148A5072317896 @default.
- W4376875148 hasAuthorship W4376875148A5085563337 @default.
- W4376875148 hasAuthorship W4376875148A5091965205 @default.
- W4376875148 hasBestOaLocation W43768751481 @default.
- W4376875148 hasConcept C108583219 @default.
- W4376875148 hasConcept C119857082 @default.
- W4376875148 hasConcept C121608353 @default.
- W4376875148 hasConcept C12267149 @default.
- W4376875148 hasConcept C123860398 @default.
- W4376875148 hasConcept C126322002 @default.
- W4376875148 hasConcept C138885662 @default.
- W4376875148 hasConcept C153180895 @default.
- W4376875148 hasConcept C154945302 @default.
- W4376875148 hasConcept C203014093 @default.
- W4376875148 hasConcept C27438332 @default.
- W4376875148 hasConcept C2776401178 @default.
- W4376875148 hasConcept C2778461978 @default.
- W4376875148 hasConcept C41008148 @default.
- W4376875148 hasConcept C41895202 @default.
- W4376875148 hasConcept C52622490 @default.
- W4376875148 hasConcept C69738355 @default.
- W4376875148 hasConcept C71924100 @default.
- W4376875148 hasConcept C81363708 @default.
- W4376875148 hasConceptScore W4376875148C108583219 @default.
- W4376875148 hasConceptScore W4376875148C119857082 @default.
- W4376875148 hasConceptScore W4376875148C121608353 @default.
- W4376875148 hasConceptScore W4376875148C12267149 @default.
- W4376875148 hasConceptScore W4376875148C123860398 @default.
- W4376875148 hasConceptScore W4376875148C126322002 @default.
- W4376875148 hasConceptScore W4376875148C138885662 @default.
- W4376875148 hasConceptScore W4376875148C153180895 @default.
- W4376875148 hasConceptScore W4376875148C154945302 @default.
- W4376875148 hasConceptScore W4376875148C203014093 @default.
- W4376875148 hasConceptScore W4376875148C27438332 @default.
- W4376875148 hasConceptScore W4376875148C2776401178 @default.
- W4376875148 hasConceptScore W4376875148C2778461978 @default.
- W4376875148 hasConceptScore W4376875148C41008148 @default.
- W4376875148 hasConceptScore W4376875148C41895202 @default.
- W4376875148 hasConceptScore W4376875148C52622490 @default.
- W4376875148 hasConceptScore W4376875148C69738355 @default.
- W4376875148 hasConceptScore W4376875148C71924100 @default.
- W4376875148 hasConceptScore W4376875148C81363708 @default.
- W4376875148 hasLocation W43768751481 @default.
- W4376875148 hasOpenAccess W4376875148 @default.
- W4376875148 hasPrimaryLocation W43768751481 @default.
- W4376875148 hasRelatedWork W1756315871 @default.
- W4376875148 hasRelatedWork W1966997960 @default.
- W4376875148 hasRelatedWork W1980511770 @default.
- W4376875148 hasRelatedWork W1984671715 @default.
- W4376875148 hasRelatedWork W2146076056 @default.
- W4376875148 hasRelatedWork W2151879849 @default.
- W4376875148 hasRelatedWork W2279398222 @default.
- W4376875148 hasRelatedWork W2380927352 @default.
- W4376875148 hasRelatedWork W2601157893 @default.
- W4376875148 hasRelatedWork W4299822940 @default.
- W4376875148 hasVolume "18" @default.
- W4376875148 isParatext "false" @default.
- W4376875148 isRetracted "false" @default.
- W4376875148 workType "article" @default.