Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376875175> ?p ?o ?g. }
- W4376875175 endingPage "1748" @default.
- W4376875175 startingPage "1748" @default.
- W4376875175 abstract "Lung auscultation has long been used as a valuable medical tool to assess respiratory health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic. Lung auscultation is used to assess a patient’s respiratory role. Modern technological progress has guided the growth of computer-based respiratory speech investigation, a valuable tool for detecting lung abnormalities and diseases. Several recent studies have reviewed this important area, but none are specific to lung sound-based analysis with deep-learning architectures from one side and the provided information was not sufficient for a good understanding of these techniques. This paper gives a complete review of prior deep-learning-based architecture lung sound analysis. Deep-learning-based respiratory sound analysis articles are found in different databases including the Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications were extracted and submitted for assessment. This paper discusses different trends in pathology/lung sound, the common features for classifying lung sounds, several considered datasets, classification methods, signal processing techniques, and some statistical information based on previous study findings. Finally, the assessment concludes with a discussion of potential future improvements and recommendations." @default.
- W4376875175 created "2023-05-18" @default.
- W4376875175 creator A5016153721 @default.
- W4376875175 creator A5040686328 @default.
- W4376875175 creator A5046824150 @default.
- W4376875175 creator A5059954937 @default.
- W4376875175 creator A5063091955 @default.
- W4376875175 creator A5063212967 @default.
- W4376875175 creator A5075056699 @default.
- W4376875175 date "2023-05-16" @default.
- W4376875175 modified "2023-09-30" @default.
- W4376875175 title "Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview" @default.
- W4376875175 cites W1541358243 @default.
- W4376875175 cites W1544890851 @default.
- W4376875175 cites W1989883122 @default.
- W4376875175 cites W1990755053 @default.
- W4376875175 cites W2017714438 @default.
- W4376875175 cites W2021429427 @default.
- W4376875175 cites W2025104967 @default.
- W4376875175 cites W2047469300 @default.
- W4376875175 cites W2076866543 @default.
- W4376875175 cites W2112796928 @default.
- W4376875175 cites W2152852068 @default.
- W4376875175 cites W2218455040 @default.
- W4376875175 cites W2286804426 @default.
- W4376875175 cites W2399296970 @default.
- W4376875175 cites W2537763288 @default.
- W4376875175 cites W2702739796 @default.
- W4376875175 cites W2739016327 @default.
- W4376875175 cites W2754136846 @default.
- W4376875175 cites W2765440642 @default.
- W4376875175 cites W2768465935 @default.
- W4376875175 cites W2770588696 @default.
- W4376875175 cites W2774458438 @default.
- W4376875175 cites W2801920224 @default.
- W4376875175 cites W2806006687 @default.
- W4376875175 cites W2899493363 @default.
- W4376875175 cites W2904193962 @default.
- W4376875175 cites W2909450825 @default.
- W4376875175 cites W2919412094 @default.
- W4376875175 cites W2919924278 @default.
- W4376875175 cites W2921177942 @default.
- W4376875175 cites W2921249351 @default.
- W4376875175 cites W2928961919 @default.
- W4376875175 cites W2951165623 @default.
- W4376875175 cites W2954103020 @default.
- W4376875175 cites W2974007153 @default.
- W4376875175 cites W2976594877 @default.
- W4376875175 cites W2983339698 @default.
- W4376875175 cites W2992420332 @default.
- W4376875175 cites W2993810691 @default.
- W4376875175 cites W2999759831 @default.
- W4376875175 cites W3003965947 @default.
- W4376875175 cites W3006115509 @default.
- W4376875175 cites W3006169930 @default.
- W4376875175 cites W3008276873 @default.
- W4376875175 cites W3011086304 @default.
- W4376875175 cites W3014304846 @default.
- W4376875175 cites W3015379649 @default.
- W4376875175 cites W3021778999 @default.
- W4376875175 cites W3034052356 @default.
- W4376875175 cites W3037662149 @default.
- W4376875175 cites W3041894845 @default.
- W4376875175 cites W3045458843 @default.
- W4376875175 cites W3082620512 @default.
- W4376875175 cites W3088366593 @default.
- W4376875175 cites W3095616795 @default.
- W4376875175 cites W3095921152 @default.
- W4376875175 cites W3097359093 @default.
- W4376875175 cites W3098448448 @default.
- W4376875175 cites W3103935216 @default.
- W4376875175 cites W3107962736 @default.
- W4376875175 cites W3108834006 @default.
- W4376875175 cites W3108860112 @default.
- W4376875175 cites W3117606711 @default.
- W4376875175 cites W3120903390 @default.
- W4376875175 cites W3130798577 @default.
- W4376875175 cites W3134656315 @default.
- W4376875175 cites W3134678567 @default.
- W4376875175 cites W3135818473 @default.
- W4376875175 cites W3143410423 @default.
- W4376875175 cites W3158573506 @default.
- W4376875175 cites W3159713039 @default.
- W4376875175 cites W3169030202 @default.
- W4376875175 cites W3174451793 @default.
- W4376875175 cites W3178062047 @default.
- W4376875175 cites W3180523626 @default.
- W4376875175 cites W3194600507 @default.
- W4376875175 cites W3210342448 @default.
- W4376875175 cites W4200005875 @default.
- W4376875175 cites W4200227806 @default.
- W4376875175 cites W4205773069 @default.
- W4376875175 cites W4210428539 @default.
- W4376875175 cites W4210662381 @default.
- W4376875175 cites W4212880411 @default.
- W4376875175 cites W4214612955 @default.
- W4376875175 cites W4225915947 @default.
- W4376875175 cites W4229059593 @default.