Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376876251> ?p ?o ?g. }
- W4376876251 endingPage "18" @default.
- W4376876251 startingPage "1" @default.
- W4376876251 abstract "Corrective and preventive maintenance strategies are typically employed to maintain an efficient functionality of different facility systems. This entails the evaluation of current conditions and the prediction of future conditions. Such prediction is highly needed for critical building systems such as Heating, Ventilation, and Air Conditioning (HVAC) of hospitals to maintain their functionality and extend their lifetime. Current literature highlights the benefits of adopting machine-learning algorithms for predictive modelling. Literature also reveals a gap in predictive modelling based on real-time sensor data and the prediction of both short-term and long-term future conditions. This paper presents a data-driven predictive maintenance model of a hospital’s HVAC system with a focus on the Air Handling Units (AHUs). The developed model adopts machine-learning using the sensor data acquired by the BMS and the database of the hospital’s CMMS. Support Vector Machine (SVM), Decision Trees (DT), and K-Nearest Neighbours (KNN) algorithms are used for the prediction of AHU’s short-term conditions. Prophet Forecasting and Seasonal Auto-Regressive Integrated Moving Average (SARIMA) algorithms are then used to predict the AHU’s long-term future conditions. The study also highlights the benefits of adopting the proposed model in terms of reduced maintenance cost and improved operational effectiveness of hospital AHUs." @default.
- W4376876251 created "2023-05-18" @default.
- W4376876251 creator A5002282789 @default.
- W4376876251 creator A5005297941 @default.
- W4376876251 creator A5029352592 @default.
- W4376876251 date "2023-05-16" @default.
- W4376876251 modified "2023-10-14" @default.
- W4376876251 title "A data-driven predictive maintenance model for hospital HVAC system with machine learning" @default.
- W4376876251 cites W1577914284 @default.
- W4376876251 cites W1983732626 @default.
- W4376876251 cites W1987801135 @default.
- W4376876251 cites W1999393241 @default.
- W4376876251 cites W2008617766 @default.
- W4376876251 cites W2028695918 @default.
- W4376876251 cites W2029245728 @default.
- W4376876251 cites W2065298594 @default.
- W4376876251 cites W2086020320 @default.
- W4376876251 cites W2115176840 @default.
- W4376876251 cites W2166490913 @default.
- W4376876251 cites W2215951116 @default.
- W4376876251 cites W2220250323 @default.
- W4376876251 cites W2295773848 @default.
- W4376876251 cites W2464234006 @default.
- W4376876251 cites W2487340486 @default.
- W4376876251 cites W2521479021 @default.
- W4376876251 cites W2599734327 @default.
- W4376876251 cites W2747599906 @default.
- W4376876251 cites W2749487223 @default.
- W4376876251 cites W2784269499 @default.
- W4376876251 cites W2787184475 @default.
- W4376876251 cites W2883297597 @default.
- W4376876251 cites W2896365146 @default.
- W4376876251 cites W2925322067 @default.
- W4376876251 cites W2938814897 @default.
- W4376876251 cites W2956570819 @default.
- W4376876251 cites W2972137370 @default.
- W4376876251 cites W2978287071 @default.
- W4376876251 cites W2995059028 @default.
- W4376876251 cites W2998567984 @default.
- W4376876251 cites W3004330032 @default.
- W4376876251 cites W3017111404 @default.
- W4376876251 cites W3023647578 @default.
- W4376876251 cites W3088659404 @default.
- W4376876251 cites W3097686945 @default.
- W4376876251 cites W3114271224 @default.
- W4376876251 cites W3131407838 @default.
- W4376876251 cites W3132856834 @default.
- W4376876251 cites W3169203486 @default.
- W4376876251 cites W4238311731 @default.
- W4376876251 cites W4243321158 @default.
- W4376876251 cites W4292869646 @default.
- W4376876251 doi "https://doi.org/10.1080/09613218.2023.2206989" @default.
- W4376876251 hasPublicationYear "2023" @default.
- W4376876251 type Work @default.
- W4376876251 citedByCount "0" @default.
- W4376876251 crossrefType "journal-article" @default.
- W4376876251 hasAuthorship W4376876251A5002282789 @default.
- W4376876251 hasAuthorship W4376876251A5005297941 @default.
- W4376876251 hasAuthorship W4376876251A5029352592 @default.
- W4376876251 hasConcept C103742991 @default.
- W4376876251 hasConcept C119857082 @default.
- W4376876251 hasConcept C121332964 @default.
- W4376876251 hasConcept C122346748 @default.
- W4376876251 hasConcept C12267149 @default.
- W4376876251 hasConcept C127413603 @default.
- W4376876251 hasConcept C154945302 @default.
- W4376876251 hasConcept C200601418 @default.
- W4376876251 hasConcept C24090081 @default.
- W4376876251 hasConcept C2780440489 @default.
- W4376876251 hasConcept C41008148 @default.
- W4376876251 hasConcept C45804977 @default.
- W4376876251 hasConcept C61797465 @default.
- W4376876251 hasConcept C62520636 @default.
- W4376876251 hasConcept C70452415 @default.
- W4376876251 hasConcept C78519656 @default.
- W4376876251 hasConceptScore W4376876251C103742991 @default.
- W4376876251 hasConceptScore W4376876251C119857082 @default.
- W4376876251 hasConceptScore W4376876251C121332964 @default.
- W4376876251 hasConceptScore W4376876251C122346748 @default.
- W4376876251 hasConceptScore W4376876251C12267149 @default.
- W4376876251 hasConceptScore W4376876251C127413603 @default.
- W4376876251 hasConceptScore W4376876251C154945302 @default.
- W4376876251 hasConceptScore W4376876251C200601418 @default.
- W4376876251 hasConceptScore W4376876251C24090081 @default.
- W4376876251 hasConceptScore W4376876251C2780440489 @default.
- W4376876251 hasConceptScore W4376876251C41008148 @default.
- W4376876251 hasConceptScore W4376876251C45804977 @default.
- W4376876251 hasConceptScore W4376876251C61797465 @default.
- W4376876251 hasConceptScore W4376876251C62520636 @default.
- W4376876251 hasConceptScore W4376876251C70452415 @default.
- W4376876251 hasConceptScore W4376876251C78519656 @default.
- W4376876251 hasLocation W43768762511 @default.
- W4376876251 hasOpenAccess W4376876251 @default.
- W4376876251 hasPrimaryLocation W43768762511 @default.
- W4376876251 hasRelatedWork W1978915455 @default.
- W4376876251 hasRelatedWork W2597821908 @default.
- W4376876251 hasRelatedWork W2937631562 @default.
- W4376876251 hasRelatedWork W2978287071 @default.