Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376879040> ?p ?o ?g. }
- W4376879040 endingPage "104395" @default.
- W4376879040 startingPage "104395" @default.
- W4376879040 abstract "The study has dual objectives. Our first objective (1) is to develop a community-of-practice-based evaluation methodology for knowledge-intensive computational methods. We target a whitebox analysis of the computational methods to gain insight on their functional features and inner workings. In more detail, we aim to answer evaluation questions on (i) support offered by computational methods for functional features within the application domain; and (ii) in-depth characterizations of the underlying computational processes, models, data and knowledge of the computational methods. Our second objective (2) involves applying the evaluation methodology to answer questions (i) and (ii) for knowledge-intensive clinical decision support (CDS) methods, which operationalize clinical knowledge as computer interpretable guidelines (CIG); we focus on multimorbidity CIG-based clinical decision support (MGCDS) methods that target multimorbidity treatment plans.Our methodology directly involves the research community of practice in (a) identifying functional features within the application domain; (b) defining exemplar case studies covering these features; and (c) solving the case studies using their developed computational methods-research groups detail their solutions and functional feature support in solution reports. Next, the study authors (d) perform a qualitative analysis of the solution reports, identifying and characterizing common themes (or dimensions) among the computational methods. This methodology is well suited to perform whitebox analysis, as it directly involves the respective developers in studying inner workings and feature support of computational methods. Moreover, the established evaluation parameters (e.g., features, case studies, themes) constitute a re-usable benchmark framework, which can be used to evaluate new computational methods as they are developed. We applied our community-of-practice-based evaluation methodology on MGCDS methods.Six research groups submitted comprehensive solution reports for the exemplar case studies. Solutions for two of these case studies were reported by all groups. We identified four evaluation dimensions: detection of adverse interactions, management strategy representation, implementation paradigms, and human-in-the-loop support. Based on our whitebox analysis, we present answers to the evaluation questions (i) and (ii) for MGCDS methods.The proposed evaluation methodology includes features of illuminative and comparison-based approaches; focusing on understanding rather than judging/scoring or identifying gaps in current methods. It involves answering evaluation questions with direct involvement of the research community of practice, who participate in setting up evaluation parameters and solving exemplar case studies. Our methodology was successfully applied to evaluate six MGCDS knowledge-intensive computational methods. We established that, while the evaluated methods provide a multifaceted set of solutions with different benefits and drawbacks, no single MGCDS method currently provides a comprehensive solution for MGCDS.We posit that our evaluation methodology, applied here to gain new insights into MGCDS, can be used to assess other types of knowledge-intensive computational methods and answer other types of evaluation questions. Our case studies can be accessed at our GitHub repository (https://github.com/william-vw/MGCDS)." @default.
- W4376879040 created "2023-05-18" @default.
- W4376879040 creator A5003147487 @default.
- W4376879040 creator A5005125860 @default.
- W4376879040 creator A5007745000 @default.
- W4376879040 creator A5009514604 @default.
- W4376879040 creator A5011142830 @default.
- W4376879040 creator A5012783740 @default.
- W4376879040 creator A5012918421 @default.
- W4376879040 creator A5023659508 @default.
- W4376879040 creator A5030137665 @default.
- W4376879040 creator A5034849582 @default.
- W4376879040 creator A5040369618 @default.
- W4376879040 creator A5054511215 @default.
- W4376879040 creator A5058424348 @default.
- W4376879040 creator A5058601792 @default.
- W4376879040 creator A5069923867 @default.
- W4376879040 creator A5074024292 @default.
- W4376879040 creator A5074088845 @default.
- W4376879040 creator A5079477540 @default.
- W4376879040 creator A5085354389 @default.
- W4376879040 creator A5090903923 @default.
- W4376879040 creator A5091148729 @default.
- W4376879040 date "2023-06-01" @default.
- W4376879040 modified "2023-10-16" @default.
- W4376879040 title "A community-of-practice-based evaluation methodology for knowledge intensive computational methods and its application to multimorbidity decision support" @default.
- W4376879040 cites W114929610 @default.
- W4376879040 cites W1534379841 @default.
- W4376879040 cites W1534631037 @default.
- W4376879040 cites W1565165572 @default.
- W4376879040 cites W1603806745 @default.
- W4376879040 cites W1963712014 @default.
- W4376879040 cites W1998160720 @default.
- W4376879040 cites W2009749885 @default.
- W4376879040 cites W2028942381 @default.
- W4376879040 cites W2104074904 @default.
- W4376879040 cites W2110012716 @default.
- W4376879040 cites W2119709400 @default.
- W4376879040 cites W2130182605 @default.
- W4376879040 cites W2133674686 @default.
- W4376879040 cites W2137650094 @default.
- W4376879040 cites W2139736061 @default.
- W4376879040 cites W2154875570 @default.
- W4376879040 cites W2165428180 @default.
- W4376879040 cites W2171466942 @default.
- W4376879040 cites W2408641126 @default.
- W4376879040 cites W2499706809 @default.
- W4376879040 cites W2517828448 @default.
- W4376879040 cites W2560280054 @default.
- W4376879040 cites W2563721269 @default.
- W4376879040 cites W2578267317 @default.
- W4376879040 cites W2758101670 @default.
- W4376879040 cites W2767891136 @default.
- W4376879040 cites W2964221236 @default.
- W4376879040 cites W3004612364 @default.
- W4376879040 cites W3094515339 @default.
- W4376879040 cites W3095380161 @default.
- W4376879040 cites W3174346744 @default.
- W4376879040 cites W4240994392 @default.
- W4376879040 cites W4309338457 @default.
- W4376879040 doi "https://doi.org/10.1016/j.jbi.2023.104395" @default.
- W4376879040 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37201618" @default.
- W4376879040 hasPublicationYear "2023" @default.
- W4376879040 type Work @default.
- W4376879040 citedByCount "1" @default.
- W4376879040 countsByYear W43768790402023 @default.
- W4376879040 crossrefType "journal-article" @default.
- W4376879040 hasAuthorship W4376879040A5003147487 @default.
- W4376879040 hasAuthorship W4376879040A5005125860 @default.
- W4376879040 hasAuthorship W4376879040A5007745000 @default.
- W4376879040 hasAuthorship W4376879040A5009514604 @default.
- W4376879040 hasAuthorship W4376879040A5011142830 @default.
- W4376879040 hasAuthorship W4376879040A5012783740 @default.
- W4376879040 hasAuthorship W4376879040A5012918421 @default.
- W4376879040 hasAuthorship W4376879040A5023659508 @default.
- W4376879040 hasAuthorship W4376879040A5030137665 @default.
- W4376879040 hasAuthorship W4376879040A5034849582 @default.
- W4376879040 hasAuthorship W4376879040A5040369618 @default.
- W4376879040 hasAuthorship W4376879040A5054511215 @default.
- W4376879040 hasAuthorship W4376879040A5058424348 @default.
- W4376879040 hasAuthorship W4376879040A5058601792 @default.
- W4376879040 hasAuthorship W4376879040A5069923867 @default.
- W4376879040 hasAuthorship W4376879040A5074024292 @default.
- W4376879040 hasAuthorship W4376879040A5074088845 @default.
- W4376879040 hasAuthorship W4376879040A5079477540 @default.
- W4376879040 hasAuthorship W4376879040A5085354389 @default.
- W4376879040 hasAuthorship W4376879040A5090903923 @default.
- W4376879040 hasAuthorship W4376879040A5091148729 @default.
- W4376879040 hasConcept C107327155 @default.
- W4376879040 hasConcept C111472728 @default.
- W4376879040 hasConcept C119857082 @default.
- W4376879040 hasConcept C13280743 @default.
- W4376879040 hasConcept C134306372 @default.
- W4376879040 hasConcept C136764020 @default.
- W4376879040 hasConcept C138885662 @default.
- W4376879040 hasConcept C154945302 @default.
- W4376879040 hasConcept C162324750 @default.
- W4376879040 hasConcept C185798385 @default.