Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376879253> ?p ?o ?g. }
- W4376879253 endingPage "107031" @default.
- W4376879253 startingPage "107031" @default.
- W4376879253 abstract "In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7–30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD." @default.
- W4376879253 created "2023-05-18" @default.
- W4376879253 creator A5012756039 @default.
- W4376879253 creator A5016254260 @default.
- W4376879253 creator A5058883368 @default.
- W4376879253 date "2023-07-01" @default.
- W4376879253 modified "2023-10-06" @default.
- W4376879253 title "Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN" @default.
- W4376879253 cites W2288117913 @default.
- W4376879253 cites W2581439063 @default.
- W4376879253 cites W2588993240 @default.
- W4376879253 cites W2592210360 @default.
- W4376879253 cites W2755552661 @default.
- W4376879253 cites W2806647989 @default.
- W4376879253 cites W2807819473 @default.
- W4376879253 cites W2883293408 @default.
- W4376879253 cites W2889245000 @default.
- W4376879253 cites W2890576809 @default.
- W4376879253 cites W2894440018 @default.
- W4376879253 cites W2894696376 @default.
- W4376879253 cites W2896943117 @default.
- W4376879253 cites W2898153030 @default.
- W4376879253 cites W2898353408 @default.
- W4376879253 cites W2898433579 @default.
- W4376879253 cites W2914869936 @default.
- W4376879253 cites W2919520811 @default.
- W4376879253 cites W2923463496 @default.
- W4376879253 cites W2937876673 @default.
- W4376879253 cites W2939535752 @default.
- W4376879253 cites W2940371405 @default.
- W4376879253 cites W2967878847 @default.
- W4376879253 cites W2971278655 @default.
- W4376879253 cites W2981665155 @default.
- W4376879253 cites W3001177249 @default.
- W4376879253 cites W3036387823 @default.
- W4376879253 cites W3037476094 @default.
- W4376879253 cites W3080914981 @default.
- W4376879253 cites W3091780972 @default.
- W4376879253 cites W3107889278 @default.
- W4376879253 cites W3154237080 @default.
- W4376879253 cites W3155926737 @default.
- W4376879253 cites W3163434915 @default.
- W4376879253 cites W3185004711 @default.
- W4376879253 cites W3208729248 @default.
- W4376879253 cites W4200151804 @default.
- W4376879253 cites W4205230982 @default.
- W4376879253 cites W4206634208 @default.
- W4376879253 cites W4220758785 @default.
- W4376879253 cites W4224218937 @default.
- W4376879253 cites W4310623152 @default.
- W4376879253 doi "https://doi.org/10.1016/j.compbiomed.2023.107031" @default.
- W4376879253 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37211002" @default.
- W4376879253 hasPublicationYear "2023" @default.
- W4376879253 type Work @default.
- W4376879253 citedByCount "2" @default.
- W4376879253 countsByYear W43768792532023 @default.
- W4376879253 crossrefType "journal-article" @default.
- W4376879253 hasAuthorship W4376879253A5012756039 @default.
- W4376879253 hasAuthorship W4376879253A5016254260 @default.
- W4376879253 hasAuthorship W4376879253A5058883368 @default.
- W4376879253 hasConcept C119857082 @default.
- W4376879253 hasConcept C142724271 @default.
- W4376879253 hasConcept C148483581 @default.
- W4376879253 hasConcept C153180895 @default.
- W4376879253 hasConcept C154945302 @default.
- W4376879253 hasConcept C15744967 @default.
- W4376879253 hasConcept C169760540 @default.
- W4376879253 hasConcept C2779134260 @default.
- W4376879253 hasConcept C2779734285 @default.
- W4376879253 hasConcept C28490314 @default.
- W4376879253 hasConcept C41008148 @default.
- W4376879253 hasConcept C45942800 @default.
- W4376879253 hasConcept C522805319 @default.
- W4376879253 hasConcept C52622490 @default.
- W4376879253 hasConcept C71924100 @default.
- W4376879253 hasConcept C95623464 @default.
- W4376879253 hasConceptScore W4376879253C119857082 @default.
- W4376879253 hasConceptScore W4376879253C142724271 @default.
- W4376879253 hasConceptScore W4376879253C148483581 @default.
- W4376879253 hasConceptScore W4376879253C153180895 @default.
- W4376879253 hasConceptScore W4376879253C154945302 @default.
- W4376879253 hasConceptScore W4376879253C15744967 @default.
- W4376879253 hasConceptScore W4376879253C169760540 @default.
- W4376879253 hasConceptScore W4376879253C2779134260 @default.
- W4376879253 hasConceptScore W4376879253C2779734285 @default.
- W4376879253 hasConceptScore W4376879253C28490314 @default.
- W4376879253 hasConceptScore W4376879253C41008148 @default.
- W4376879253 hasConceptScore W4376879253C45942800 @default.
- W4376879253 hasConceptScore W4376879253C522805319 @default.
- W4376879253 hasConceptScore W4376879253C52622490 @default.
- W4376879253 hasConceptScore W4376879253C71924100 @default.
- W4376879253 hasConceptScore W4376879253C95623464 @default.
- W4376879253 hasLocation W43768792531 @default.
- W4376879253 hasLocation W43768792532 @default.
- W4376879253 hasOpenAccess W4376879253 @default.
- W4376879253 hasPrimaryLocation W43768792531 @default.
- W4376879253 hasRelatedWork W2144059113 @default.
- W4376879253 hasRelatedWork W2146076056 @default.