Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376880129> ?p ?o ?g. }
- W4376880129 endingPage "127852" @default.
- W4376880129 startingPage "127852" @default.
- W4376880129 abstract "The increasing concern about climate change and global warming led to the necessity to develop new energy sources. Within this scenario, wind power has become a major player due to its global availability and competitive prices. However, the intermittency and stochastic characteristics of the wind ultimately damper its efficient usage, increasing its operational costs. To mitigate this barrier, this work investigates the spatiotemporal phenomena underpinning wind speed and their usefulness when it comes to wind forecasting. We propose a new ensemble model based on Graph Attention Network (GAT) and GraphSAGE to predict wind speed in a bi-dimensional approach. The model was trained and validated using the Dutch dataset and considered several time horizons, timelags, and the impact of weather stations distributed across the country. To benchmark the results, the proposed model was compared against the persistence and LSTM models, as well as state-of-the-art paradigms such as LSSTM, GNN-GAT, and GNN-SAGE. The results showed that the ensemble SAGE-GAT was equivalent to or outperformed all benchmarking models and had lesser error values than those found in reference literature. The results also showed that the longer the horizon is to predict wind speed, the more relevant the spatial information passed from the stations is." @default.
- W4376880129 created "2023-05-18" @default.
- W4376880129 creator A5017156485 @default.
- W4376880129 creator A5064624600 @default.
- W4376880129 creator A5090128156 @default.
- W4376880129 creator A5091966355 @default.
- W4376880129 creator A5066692941 @default.
- W4376880129 date "2023-09-01" @default.
- W4376880129 modified "2023-10-12" @default.
- W4376880129 title "Spatiotemporal analysis of bidimensional wind speed forecasting: Development and thorough assessment of LSTM and ensemble graph neural networks on the Dutch database" @default.
- W4376880129 cites W2002850827 @default.
- W4376880129 cites W2064675550 @default.
- W4376880129 cites W2131774270 @default.
- W4376880129 cites W2512630954 @default.
- W4376880129 cites W2523591818 @default.
- W4376880129 cites W2790114420 @default.
- W4376880129 cites W2893815961 @default.
- W4376880129 cites W2933878133 @default.
- W4376880129 cites W2943991646 @default.
- W4376880129 cites W2960560113 @default.
- W4376880129 cites W2985331920 @default.
- W4376880129 cites W3015799856 @default.
- W4376880129 cites W3023221330 @default.
- W4376880129 cites W3044963726 @default.
- W4376880129 cites W3083236402 @default.
- W4376880129 cites W3088961167 @default.
- W4376880129 cites W3117062925 @default.
- W4376880129 cites W3124650867 @default.
- W4376880129 cites W3128300643 @default.
- W4376880129 cites W3134101959 @default.
- W4376880129 cites W3152893301 @default.
- W4376880129 cites W3162334116 @default.
- W4376880129 cites W3185895012 @default.
- W4376880129 cites W3193339810 @default.
- W4376880129 cites W3193999147 @default.
- W4376880129 cites W4206994921 @default.
- W4376880129 cites W4210257598 @default.
- W4376880129 cites W4220746704 @default.
- W4376880129 cites W4220770336 @default.
- W4376880129 cites W4226148019 @default.
- W4376880129 cites W4280587497 @default.
- W4376880129 cites W4281564675 @default.
- W4376880129 cites W4283826931 @default.
- W4376880129 cites W4293150553 @default.
- W4376880129 cites W4295009452 @default.
- W4376880129 cites W4295950983 @default.
- W4376880129 cites W4302303869 @default.
- W4376880129 cites W4303615101 @default.
- W4376880129 cites W4304689544 @default.
- W4376880129 cites W4319316943 @default.
- W4376880129 cites W4322760659 @default.
- W4376880129 doi "https://doi.org/10.1016/j.energy.2023.127852" @default.
- W4376880129 hasPublicationYear "2023" @default.
- W4376880129 type Work @default.
- W4376880129 citedByCount "3" @default.
- W4376880129 countsByYear W43768801292023 @default.
- W4376880129 crossrefType "journal-article" @default.
- W4376880129 hasAuthorship W4376880129A5017156485 @default.
- W4376880129 hasAuthorship W4376880129A5064624600 @default.
- W4376880129 hasAuthorship W4376880129A5066692941 @default.
- W4376880129 hasAuthorship W4376880129A5090128156 @default.
- W4376880129 hasAuthorship W4376880129A5091966355 @default.
- W4376880129 hasConcept C119599485 @default.
- W4376880129 hasConcept C126255220 @default.
- W4376880129 hasConcept C127413603 @default.
- W4376880129 hasConcept C13280743 @default.
- W4376880129 hasConcept C144133560 @default.
- W4376880129 hasConcept C153294291 @default.
- W4376880129 hasConcept C161067210 @default.
- W4376880129 hasConcept C162853370 @default.
- W4376880129 hasConcept C185798385 @default.
- W4376880129 hasConcept C196558001 @default.
- W4376880129 hasConcept C205649164 @default.
- W4376880129 hasConcept C2780388094 @default.
- W4376880129 hasConcept C28761237 @default.
- W4376880129 hasConcept C33923547 @default.
- W4376880129 hasConcept C41008148 @default.
- W4376880129 hasConcept C78600449 @default.
- W4376880129 hasConcept C86251818 @default.
- W4376880129 hasConceptScore W4376880129C119599485 @default.
- W4376880129 hasConceptScore W4376880129C126255220 @default.
- W4376880129 hasConceptScore W4376880129C127413603 @default.
- W4376880129 hasConceptScore W4376880129C13280743 @default.
- W4376880129 hasConceptScore W4376880129C144133560 @default.
- W4376880129 hasConceptScore W4376880129C153294291 @default.
- W4376880129 hasConceptScore W4376880129C161067210 @default.
- W4376880129 hasConceptScore W4376880129C162853370 @default.
- W4376880129 hasConceptScore W4376880129C185798385 @default.
- W4376880129 hasConceptScore W4376880129C196558001 @default.
- W4376880129 hasConceptScore W4376880129C205649164 @default.
- W4376880129 hasConceptScore W4376880129C2780388094 @default.
- W4376880129 hasConceptScore W4376880129C28761237 @default.
- W4376880129 hasConceptScore W4376880129C33923547 @default.
- W4376880129 hasConceptScore W4376880129C41008148 @default.
- W4376880129 hasConceptScore W4376880129C78600449 @default.
- W4376880129 hasConceptScore W4376880129C86251818 @default.
- W4376880129 hasFunder F4320322025 @default.
- W4376880129 hasFunder F4320334593 @default.