Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376958733> ?p ?o ?g. }
- W4376958733 endingPage "e0000249" @default.
- W4376958733 startingPage "e0000249" @default.
- W4376958733 abstract "Diagnosis of tuberculosis (TB) among young children (<5 years) is challenging due to the paucibacillary nature of clinical disease and clinical similarities to other childhood diseases. We used machine learning to develop accurate prediction models of microbial confirmation with simply defined and easily obtainable clinical, demographic, and radiologic factors. We evaluated eleven supervised machine learning models (using stepwise regression, regularized regression, decision tree, and support vector machine approaches) to predict microbial confirmation in young children (<5 years) using samples from invasive (reference-standard) or noninvasive procedure. Models were trained and tested using data from a large prospective cohort of young children with symptoms suggestive of TB in Kenya. Model performance was evaluated using areas under the receiver operating curve (AUROC) and precision-recall curve (AUPRC), accuracy metrics. (i.e., sensitivity, specificity), F-beta scores, Cohen's Kappa, and Matthew's Correlation Coefficient. Among 262 included children, 29 (11%) were microbially confirmed using any sampling technique. Models were accurate at predicting microbial confirmation in samples obtained from invasive procedures (AUROC range: 0.84-0.90) and from noninvasive procedures (AUROC range: 0.83-0.89). History of household contact with a confirmed case of TB, immunological evidence of TB infection, and a chest x-ray consistent with TB disease were consistently influential across models. Our results suggest machine learning can accurately predict microbial confirmation of M. tuberculosis in young children using simply defined features and increase the bacteriologic yield in diagnostic cohorts. These findings may facilitate clinical decision making and guide clinical research into novel biomarkers of TB disease in young children." @default.
- W4376958733 created "2023-05-18" @default.
- W4376958733 creator A5016974629 @default.
- W4376958733 creator A5019322508 @default.
- W4376958733 creator A5026322163 @default.
- W4376958733 creator A5044773872 @default.
- W4376958733 creator A5051158976 @default.
- W4376958733 creator A5053175228 @default.
- W4376958733 creator A5064870047 @default.
- W4376958733 creator A5071597562 @default.
- W4376958733 creator A5077360670 @default.
- W4376958733 creator A5084131391 @default.
- W4376958733 date "2023-05-17" @default.
- W4376958733 modified "2023-09-27" @default.
- W4376958733 title "Machine learning to predict bacteriologic confirmation of Mycobacterium tuberculosis in infants and very young children" @default.
- W4376958733 cites W1887151211 @default.
- W4376958733 cites W1976526581 @default.
- W4376958733 cites W2070493638 @default.
- W4376958733 cites W2109686379 @default.
- W4376958733 cites W2117352205 @default.
- W4376958733 cites W2133477312 @default.
- W4376958733 cites W2148143831 @default.
- W4376958733 cites W2170374915 @default.
- W4376958733 cites W2312659652 @default.
- W4376958733 cites W2320004017 @default.
- W4376958733 cites W2745006777 @default.
- W4376958733 cites W2781826189 @default.
- W4376958733 cites W2782098519 @default.
- W4376958733 cites W2964208711 @default.
- W4376958733 cites W2970337795 @default.
- W4376958733 cites W2999309192 @default.
- W4376958733 cites W3033933596 @default.
- W4376958733 cites W3119043966 @default.
- W4376958733 cites W3120592694 @default.
- W4376958733 cites W3124375766 @default.
- W4376958733 cites W3216752663 @default.
- W4376958733 cites W4239510810 @default.
- W4376958733 cites W4293201911 @default.
- W4376958733 cites W4293563303 @default.
- W4376958733 cites W4306248755 @default.
- W4376958733 cites W4306843183 @default.
- W4376958733 cites W4308194741 @default.
- W4376958733 doi "https://doi.org/10.1371/journal.pdig.0000249" @default.
- W4376958733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37195976" @default.
- W4376958733 hasPublicationYear "2023" @default.
- W4376958733 type Work @default.
- W4376958733 citedByCount "0" @default.
- W4376958733 crossrefType "journal-article" @default.
- W4376958733 hasAuthorship W4376958733A5016974629 @default.
- W4376958733 hasAuthorship W4376958733A5019322508 @default.
- W4376958733 hasAuthorship W4376958733A5026322163 @default.
- W4376958733 hasAuthorship W4376958733A5044773872 @default.
- W4376958733 hasAuthorship W4376958733A5051158976 @default.
- W4376958733 hasAuthorship W4376958733A5053175228 @default.
- W4376958733 hasAuthorship W4376958733A5064870047 @default.
- W4376958733 hasAuthorship W4376958733A5071597562 @default.
- W4376958733 hasAuthorship W4376958733A5077360670 @default.
- W4376958733 hasAuthorship W4376958733A5084131391 @default.
- W4376958733 hasBestOaLocation W43769587331 @default.
- W4376958733 hasConcept C100660578 @default.
- W4376958733 hasConcept C105795698 @default.
- W4376958733 hasConcept C119857082 @default.
- W4376958733 hasConcept C12267149 @default.
- W4376958733 hasConcept C126322002 @default.
- W4376958733 hasConcept C142724271 @default.
- W4376958733 hasConcept C154945302 @default.
- W4376958733 hasConcept C15744967 @default.
- W4376958733 hasConcept C160798450 @default.
- W4376958733 hasConcept C163864269 @default.
- W4376958733 hasConcept C164085508 @default.
- W4376958733 hasConcept C170964787 @default.
- W4376958733 hasConcept C180747234 @default.
- W4376958733 hasConcept C2781059462 @default.
- W4376958733 hasConcept C2781069245 @default.
- W4376958733 hasConcept C33923547 @default.
- W4376958733 hasConcept C41008148 @default.
- W4376958733 hasConcept C58471807 @default.
- W4376958733 hasConcept C71924100 @default.
- W4376958733 hasConcept C72563966 @default.
- W4376958733 hasConcept C83546350 @default.
- W4376958733 hasConcept C84525736 @default.
- W4376958733 hasConceptScore W4376958733C100660578 @default.
- W4376958733 hasConceptScore W4376958733C105795698 @default.
- W4376958733 hasConceptScore W4376958733C119857082 @default.
- W4376958733 hasConceptScore W4376958733C12267149 @default.
- W4376958733 hasConceptScore W4376958733C126322002 @default.
- W4376958733 hasConceptScore W4376958733C142724271 @default.
- W4376958733 hasConceptScore W4376958733C154945302 @default.
- W4376958733 hasConceptScore W4376958733C15744967 @default.
- W4376958733 hasConceptScore W4376958733C160798450 @default.
- W4376958733 hasConceptScore W4376958733C163864269 @default.
- W4376958733 hasConceptScore W4376958733C164085508 @default.
- W4376958733 hasConceptScore W4376958733C170964787 @default.
- W4376958733 hasConceptScore W4376958733C180747234 @default.
- W4376958733 hasConceptScore W4376958733C2781059462 @default.
- W4376958733 hasConceptScore W4376958733C2781069245 @default.
- W4376958733 hasConceptScore W4376958733C33923547 @default.
- W4376958733 hasConceptScore W4376958733C41008148 @default.