Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376988321> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4376988321 abstract "Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the data variability between inter-session and inter-subject scenarios presents a great challenge. The existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability. Hence, these methods also require learning over millions of training parameters and a large pre-trained and target domain dataset in both the pre-training and adaptation stages. As a result, it makes high-end resource-bounded and computationally very expensive for deployment in real-time applications. To overcome this problem, we propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition performance. The All-ConvNet+TL model consists solely of convolutional layers, a simple yet efficient framework for learning invariant and discriminative representations to address the distribution shifts caused by inter-session and inter-subject data variability. Experiments on four datasets demonstrate that our proposed methods outperform the most complex existing approaches by a large margin and achieve state-of-the-art results on inter-session and inter-subject scenarios and perform on par or competitively on intra-session gesture recognition. These performance gaps increase even more when a tiny amount (e.g., a single trial) of data is available on the target domain for adaptation. These outstanding experimental results provide evidence that the current state-of-the-art models may be overparameterized for sEMG-based inter-session and inter-subject gesture recognition tasks." @default.
- W4376988321 created "2023-05-18" @default.
- W4376988321 creator A5012046735 @default.
- W4376988321 creator A5022274788 @default.
- W4376988321 creator A5033247734 @default.
- W4376988321 creator A5044515505 @default.
- W4376988321 date "2023-05-13" @default.
- W4376988321 modified "2023-10-16" @default.
- W4376988321 title "Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by Leveraging Lightweight All-ConvNet and Transfer Learning" @default.
- W4376988321 doi "https://doi.org/10.48550/arxiv.2305.08014" @default.
- W4376988321 hasPublicationYear "2023" @default.
- W4376988321 type Work @default.
- W4376988321 citedByCount "0" @default.
- W4376988321 crossrefType "posted-content" @default.
- W4376988321 hasAuthorship W4376988321A5012046735 @default.
- W4376988321 hasAuthorship W4376988321A5022274788 @default.
- W4376988321 hasAuthorship W4376988321A5033247734 @default.
- W4376988321 hasAuthorship W4376988321A5044515505 @default.
- W4376988321 hasBestOaLocation W43769883211 @default.
- W4376988321 hasConcept C119857082 @default.
- W4376988321 hasConcept C134306372 @default.
- W4376988321 hasConcept C136764020 @default.
- W4376988321 hasConcept C150899416 @default.
- W4376988321 hasConcept C153180895 @default.
- W4376988321 hasConcept C154945302 @default.
- W4376988321 hasConcept C159437735 @default.
- W4376988321 hasConcept C207347870 @default.
- W4376988321 hasConcept C2776434776 @default.
- W4376988321 hasConcept C2779182362 @default.
- W4376988321 hasConcept C28490314 @default.
- W4376988321 hasConcept C33923547 @default.
- W4376988321 hasConcept C36503486 @default.
- W4376988321 hasConcept C41008148 @default.
- W4376988321 hasConcept C774472 @default.
- W4376988321 hasConcept C81363708 @default.
- W4376988321 hasConcept C95623464 @default.
- W4376988321 hasConcept C97931131 @default.
- W4376988321 hasConceptScore W4376988321C119857082 @default.
- W4376988321 hasConceptScore W4376988321C134306372 @default.
- W4376988321 hasConceptScore W4376988321C136764020 @default.
- W4376988321 hasConceptScore W4376988321C150899416 @default.
- W4376988321 hasConceptScore W4376988321C153180895 @default.
- W4376988321 hasConceptScore W4376988321C154945302 @default.
- W4376988321 hasConceptScore W4376988321C159437735 @default.
- W4376988321 hasConceptScore W4376988321C207347870 @default.
- W4376988321 hasConceptScore W4376988321C2776434776 @default.
- W4376988321 hasConceptScore W4376988321C2779182362 @default.
- W4376988321 hasConceptScore W4376988321C28490314 @default.
- W4376988321 hasConceptScore W4376988321C33923547 @default.
- W4376988321 hasConceptScore W4376988321C36503486 @default.
- W4376988321 hasConceptScore W4376988321C41008148 @default.
- W4376988321 hasConceptScore W4376988321C774472 @default.
- W4376988321 hasConceptScore W4376988321C81363708 @default.
- W4376988321 hasConceptScore W4376988321C95623464 @default.
- W4376988321 hasConceptScore W4376988321C97931131 @default.
- W4376988321 hasLocation W43769883211 @default.
- W4376988321 hasOpenAccess W4376988321 @default.
- W4376988321 hasPrimaryLocation W43769883211 @default.
- W4376988321 hasRelatedWork W10944326 @default.
- W4376988321 hasRelatedWork W1991466308 @default.
- W4376988321 hasRelatedWork W2001391081 @default.
- W4376988321 hasRelatedWork W2518599539 @default.
- W4376988321 hasRelatedWork W2738221750 @default.
- W4376988321 hasRelatedWork W2767522191 @default.
- W4376988321 hasRelatedWork W3010759261 @default.
- W4376988321 hasRelatedWork W4312501200 @default.
- W4376988321 hasRelatedWork W4313050734 @default.
- W4376988321 hasRelatedWork W4366224123 @default.
- W4376988321 isParatext "false" @default.
- W4376988321 isRetracted "false" @default.
- W4376988321 workType "article" @default.