Matches in SemOpenAlex for { <https://semopenalex.org/work/W4376988437> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4376988437 abstract "Recent years have noticed an increasing interest among academia and industry towards analyzing the electrical consumption of residential buildings and employing smart home energy management systems (HEMS) to reduce household energy consumption and costs. HEMS has been developed to simulate the statistical and functional properties of actual smart grids. Access to publicly available datasets is a major challenge in this type of research. The potential of artificial HEMS applications will be further enhanced with the development of time series that represent different operating conditions of the synthetic systems. In this paper, we propose a novel variational auto-encoder-generative adversarial network (VAE-GAN) technique for generating time-series data on energy consumption in smart homes. We also explore how the generative model performs when combined with a Q-learning-based HEMS. We tested the online performance of Q-learning-based HEMS with real-world smart home data. To test the generated dataset, we measure the Kullback-Leibler (KL) divergence, maximum mean discrepancy (MMD), and the Wasserstein distance between the probability distributions of the real and synthetic data. Our experiments show that VAE-GAN-generated synthetic data closely matches the real data distribution. Finally, we show that the generated data allows for the training of a higher-performance Q-learning-based HEMS compared to datasets generated with baseline approaches." @default.
- W4376988437 created "2023-05-18" @default.
- W4376988437 creator A5068888332 @default.
- W4376988437 creator A5070594349 @default.
- W4376988437 creator A5080850676 @default.
- W4376988437 creator A5089891162 @default.
- W4376988437 date "2023-05-14" @default.
- W4376988437 modified "2023-09-29" @default.
- W4376988437 title "Smart Home Energy Management: VAE-GAN synthetic dataset generator and Q-learning" @default.
- W4376988437 doi "https://doi.org/10.48550/arxiv.2305.08885" @default.
- W4376988437 hasPublicationYear "2023" @default.
- W4376988437 type Work @default.
- W4376988437 citedByCount "0" @default.
- W4376988437 crossrefType "posted-content" @default.
- W4376988437 hasAuthorship W4376988437A5068888332 @default.
- W4376988437 hasAuthorship W4376988437A5070594349 @default.
- W4376988437 hasAuthorship W4376988437A5080850676 @default.
- W4376988437 hasAuthorship W4376988437A5089891162 @default.
- W4376988437 hasBestOaLocation W43769884371 @default.
- W4376988437 hasConcept C10558101 @default.
- W4376988437 hasConcept C105795698 @default.
- W4376988437 hasConcept C108583219 @default.
- W4376988437 hasConcept C111368507 @default.
- W4376988437 hasConcept C119599485 @default.
- W4376988437 hasConcept C119857082 @default.
- W4376988437 hasConcept C121332964 @default.
- W4376988437 hasConcept C124101348 @default.
- W4376988437 hasConcept C12725497 @default.
- W4376988437 hasConcept C127313418 @default.
- W4376988437 hasConcept C127413603 @default.
- W4376988437 hasConcept C138885662 @default.
- W4376988437 hasConcept C154945302 @default.
- W4376988437 hasConcept C163258240 @default.
- W4376988437 hasConcept C186370098 @default.
- W4376988437 hasConcept C207390915 @default.
- W4376988437 hasConcept C2780165032 @default.
- W4376988437 hasConcept C2780992000 @default.
- W4376988437 hasConcept C2781260460 @default.
- W4376988437 hasConcept C2988773926 @default.
- W4376988437 hasConcept C33923547 @default.
- W4376988437 hasConcept C41008148 @default.
- W4376988437 hasConcept C41895202 @default.
- W4376988437 hasConcept C62520636 @default.
- W4376988437 hasConcept C7817414 @default.
- W4376988437 hasConceptScore W4376988437C10558101 @default.
- W4376988437 hasConceptScore W4376988437C105795698 @default.
- W4376988437 hasConceptScore W4376988437C108583219 @default.
- W4376988437 hasConceptScore W4376988437C111368507 @default.
- W4376988437 hasConceptScore W4376988437C119599485 @default.
- W4376988437 hasConceptScore W4376988437C119857082 @default.
- W4376988437 hasConceptScore W4376988437C121332964 @default.
- W4376988437 hasConceptScore W4376988437C124101348 @default.
- W4376988437 hasConceptScore W4376988437C12725497 @default.
- W4376988437 hasConceptScore W4376988437C127313418 @default.
- W4376988437 hasConceptScore W4376988437C127413603 @default.
- W4376988437 hasConceptScore W4376988437C138885662 @default.
- W4376988437 hasConceptScore W4376988437C154945302 @default.
- W4376988437 hasConceptScore W4376988437C163258240 @default.
- W4376988437 hasConceptScore W4376988437C186370098 @default.
- W4376988437 hasConceptScore W4376988437C207390915 @default.
- W4376988437 hasConceptScore W4376988437C2780165032 @default.
- W4376988437 hasConceptScore W4376988437C2780992000 @default.
- W4376988437 hasConceptScore W4376988437C2781260460 @default.
- W4376988437 hasConceptScore W4376988437C2988773926 @default.
- W4376988437 hasConceptScore W4376988437C33923547 @default.
- W4376988437 hasConceptScore W4376988437C41008148 @default.
- W4376988437 hasConceptScore W4376988437C41895202 @default.
- W4376988437 hasConceptScore W4376988437C62520636 @default.
- W4376988437 hasConceptScore W4376988437C7817414 @default.
- W4376988437 hasLocation W43769884371 @default.
- W4376988437 hasOpenAccess W4376988437 @default.
- W4376988437 hasPrimaryLocation W43769884371 @default.
- W4376988437 hasRelatedWork W1597529174 @default.
- W4376988437 hasRelatedWork W1968767884 @default.
- W4376988437 hasRelatedWork W2138727143 @default.
- W4376988437 hasRelatedWork W2355759912 @default.
- W4376988437 hasRelatedWork W2356819012 @default.
- W4376988437 hasRelatedWork W2521946879 @default.
- W4376988437 hasRelatedWork W2766055636 @default.
- W4376988437 hasRelatedWork W4231437195 @default.
- W4376988437 hasRelatedWork W4280643147 @default.
- W4376988437 hasRelatedWork W2539385303 @default.
- W4376988437 isParatext "false" @default.
- W4376988437 isRetracted "false" @default.
- W4376988437 workType "article" @default.