Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377009907> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4377009907 abstract "Electroencephalography (EEG) signals are resultants of extremely complex brain activity. Some details of this hidden dynamics might be accessible through e.g. joint distributions $rho_{Delta t}$ of signals of pairs of electrodes shifted by various time delays (lag $Delta t$). A standard approach is monitoring a single evaluation of such joint distributions, like Pearson correlation (or mutual information), which turns out relatively uninteresting - as expected, there is usually a small peak for zero delay and nearly symmetric drop with delay. In contrast, such a complex signal might be composed of multiple types of statistical dependencies - this article proposes approach to automatically decompose and extract them. Specifically, we model such joint distributions as polynomials, estimated separately for all considered lag dependencies, then with PCA dimensionality reduction we find the dominant joint density distortion directions $f_v$. This way we get a few lag dependent features $a_i(Delta t)$ describing separate dominating statistical dependencies of known contributions: $rho_{Delta t}(y,z)approx sum_{i=1}^r a_i(Delta t), f_{v_i}(y,z)$. Such features complement Pearson correlation, extracting hidden more complex behavior, e.g. with asymmetry which might be related with direction of information transfer, extrema suggesting characteristic delays, or oscillatory behavior suggesting some periodicity. There is also discussed extension of Granger causality to such multi-feature joint density analysis, suggesting e.g. two separate causality waves. While this early article is initial fundamental research, in future it might help e.g. with understanding of cortex hidden dynamics, diagnosis of pathologies like epilepsy, determination of precise electrode position, or building brain-computer interface." @default.
- W4377009907 created "2023-05-19" @default.
- W4377009907 creator A5000630118 @default.
- W4377009907 date "2023-04-24" @default.
- W4377009907 modified "2023-10-16" @default.
- W4377009907 title "Time delay multi-feature correlation analysis to extract subtle dependencies from EEG signals" @default.
- W4377009907 doi "https://doi.org/10.48550/arxiv.2305.09478" @default.
- W4377009907 hasPublicationYear "2023" @default.
- W4377009907 type Work @default.
- W4377009907 citedByCount "0" @default.
- W4377009907 crossrefType "posted-content" @default.
- W4377009907 hasAuthorship W4377009907A5000630118 @default.
- W4377009907 hasBestOaLocation W43770099071 @default.
- W4377009907 hasConcept C105795698 @default.
- W4377009907 hasConcept C111030470 @default.
- W4377009907 hasConcept C117220453 @default.
- W4377009907 hasConcept C118552586 @default.
- W4377009907 hasConcept C121332964 @default.
- W4377009907 hasConcept C121864883 @default.
- W4377009907 hasConcept C138885662 @default.
- W4377009907 hasConcept C152139883 @default.
- W4377009907 hasConcept C153180895 @default.
- W4377009907 hasConcept C154945302 @default.
- W4377009907 hasConcept C15744967 @default.
- W4377009907 hasConcept C18653775 @default.
- W4377009907 hasConcept C2524010 @default.
- W4377009907 hasConcept C2776401178 @default.
- W4377009907 hasConcept C31258907 @default.
- W4377009907 hasConcept C33923547 @default.
- W4377009907 hasConcept C38976095 @default.
- W4377009907 hasConcept C41008148 @default.
- W4377009907 hasConcept C41895202 @default.
- W4377009907 hasConcept C522805319 @default.
- W4377009907 hasConcept C62520636 @default.
- W4377009907 hasConcept C75778745 @default.
- W4377009907 hasConceptScore W4377009907C105795698 @default.
- W4377009907 hasConceptScore W4377009907C111030470 @default.
- W4377009907 hasConceptScore W4377009907C117220453 @default.
- W4377009907 hasConceptScore W4377009907C118552586 @default.
- W4377009907 hasConceptScore W4377009907C121332964 @default.
- W4377009907 hasConceptScore W4377009907C121864883 @default.
- W4377009907 hasConceptScore W4377009907C138885662 @default.
- W4377009907 hasConceptScore W4377009907C152139883 @default.
- W4377009907 hasConceptScore W4377009907C153180895 @default.
- W4377009907 hasConceptScore W4377009907C154945302 @default.
- W4377009907 hasConceptScore W4377009907C15744967 @default.
- W4377009907 hasConceptScore W4377009907C18653775 @default.
- W4377009907 hasConceptScore W4377009907C2524010 @default.
- W4377009907 hasConceptScore W4377009907C2776401178 @default.
- W4377009907 hasConceptScore W4377009907C31258907 @default.
- W4377009907 hasConceptScore W4377009907C33923547 @default.
- W4377009907 hasConceptScore W4377009907C38976095 @default.
- W4377009907 hasConceptScore W4377009907C41008148 @default.
- W4377009907 hasConceptScore W4377009907C41895202 @default.
- W4377009907 hasConceptScore W4377009907C522805319 @default.
- W4377009907 hasConceptScore W4377009907C62520636 @default.
- W4377009907 hasConceptScore W4377009907C75778745 @default.
- W4377009907 hasLocation W43770099071 @default.
- W4377009907 hasOpenAccess W4377009907 @default.
- W4377009907 hasPrimaryLocation W43770099071 @default.
- W4377009907 hasRelatedWork W2016461833 @default.
- W4377009907 hasRelatedWork W2052253960 @default.
- W4377009907 hasRelatedWork W2147802381 @default.
- W4377009907 hasRelatedWork W2354756786 @default.
- W4377009907 hasRelatedWork W2382607599 @default.
- W4377009907 hasRelatedWork W2546942002 @default.
- W4377009907 hasRelatedWork W2554403468 @default.
- W4377009907 hasRelatedWork W2775127857 @default.
- W4377009907 hasRelatedWork W3197541072 @default.
- W4377009907 hasRelatedWork W4313203779 @default.
- W4377009907 isParatext "false" @default.
- W4377009907 isRetracted "false" @default.
- W4377009907 workType "article" @default.