Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377011252> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4377011252 endingPage "2860" @default.
- W4377011252 startingPage "2842" @default.
- W4377011252 abstract "Human probability judgments are both variable and subject to systematic biases. Most probability judgment models treat variability and bias separately: a deterministic model explains the origin of bias, to which a noise process is added to generate variability. But these accounts do not explain the characteristic inverse U-shaped signature linking mean and variance in probability judgments. By contrast, models based on sampling generate the mean and variance of judgments in a unified way: the variability in the response is an inevitable consequence of basing probability judgments on a small sample of remembered or simulated instances of events. We consider two recent sampling models, in which biases are explained either by the sample accumulation being further corrupted by retrieval noise (the Probability Theory + Noise account) or as a Bayesian adjustment to the uncertainty implicit in small samples (the Bayesian sampler). While the mean predictions of these accounts closely mimic one another, they differ regarding the predicted relationship between mean and variance. We show that these models can be distinguished by a novel linear regression method that analyses this crucial mean-variance signature. First, the efficacy of the method is established using model recovery, demonstrating that it more accurately recovers parameters than complex approaches. Second, the method is applied to the mean and variance of both existing and new probability judgment data, confirming that judgments are based on a small number of samples that are adjusted by a prior, as predicted by the Bayesian sampler. (PsycInfo Database Record (c) 2023 APA, all rights reserved)." @default.
- W4377011252 created "2023-05-19" @default.
- W4377011252 creator A5007418876 @default.
- W4377011252 creator A5018060667 @default.
- W4377011252 creator A5025964235 @default.
- W4377011252 creator A5054646003 @default.
- W4377011252 date "2023-10-01" @default.
- W4377011252 modified "2023-10-16" @default.
- W4377011252 title "A unified explanation of variability and bias in human probability judgments: How computational noise explains the mean–variance signature." @default.
- W4377011252 doi "https://doi.org/10.1037/xge0001414" @default.
- W4377011252 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37199970" @default.
- W4377011252 hasPublicationYear "2023" @default.
- W4377011252 type Work @default.
- W4377011252 citedByCount "0" @default.
- W4377011252 crossrefType "journal-article" @default.
- W4377011252 hasAuthorship W4377011252A5007418876 @default.
- W4377011252 hasAuthorship W4377011252A5018060667 @default.
- W4377011252 hasAuthorship W4377011252A5025964235 @default.
- W4377011252 hasAuthorship W4377011252A5054646003 @default.
- W4377011252 hasBestOaLocation W43770112522 @default.
- W4377011252 hasConcept C105795698 @default.
- W4377011252 hasConcept C107673813 @default.
- W4377011252 hasConcept C115961682 @default.
- W4377011252 hasConcept C121955636 @default.
- W4377011252 hasConcept C144133560 @default.
- W4377011252 hasConcept C149782125 @default.
- W4377011252 hasConcept C154945302 @default.
- W4377011252 hasConcept C196083921 @default.
- W4377011252 hasConcept C33923547 @default.
- W4377011252 hasConcept C41008148 @default.
- W4377011252 hasConcept C75455068 @default.
- W4377011252 hasConcept C99498987 @default.
- W4377011252 hasConceptScore W4377011252C105795698 @default.
- W4377011252 hasConceptScore W4377011252C107673813 @default.
- W4377011252 hasConceptScore W4377011252C115961682 @default.
- W4377011252 hasConceptScore W4377011252C121955636 @default.
- W4377011252 hasConceptScore W4377011252C144133560 @default.
- W4377011252 hasConceptScore W4377011252C149782125 @default.
- W4377011252 hasConceptScore W4377011252C154945302 @default.
- W4377011252 hasConceptScore W4377011252C196083921 @default.
- W4377011252 hasConceptScore W4377011252C33923547 @default.
- W4377011252 hasConceptScore W4377011252C41008148 @default.
- W4377011252 hasConceptScore W4377011252C75455068 @default.
- W4377011252 hasConceptScore W4377011252C99498987 @default.
- W4377011252 hasFunder F4320334630 @default.
- W4377011252 hasIssue "10" @default.
- W4377011252 hasLocation W43770112521 @default.
- W4377011252 hasLocation W43770112522 @default.
- W4377011252 hasLocation W43770112523 @default.
- W4377011252 hasLocation W43770112524 @default.
- W4377011252 hasLocation W43770112525 @default.
- W4377011252 hasLocation W43770112526 @default.
- W4377011252 hasOpenAccess W4377011252 @default.
- W4377011252 hasPrimaryLocation W43770112521 @default.
- W4377011252 hasRelatedWork W1590995253 @default.
- W4377011252 hasRelatedWork W2168076595 @default.
- W4377011252 hasRelatedWork W2904258669 @default.
- W4377011252 hasRelatedWork W2921837939 @default.
- W4377011252 hasRelatedWork W2998817056 @default.
- W4377011252 hasRelatedWork W4200619269 @default.
- W4377011252 hasRelatedWork W4234561312 @default.
- W4377011252 hasRelatedWork W4288711847 @default.
- W4377011252 hasRelatedWork W4297513322 @default.
- W4377011252 hasRelatedWork W4381892551 @default.
- W4377011252 hasVolume "152" @default.
- W4377011252 isParatext "false" @default.
- W4377011252 isRetracted "false" @default.
- W4377011252 workType "article" @default.