Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377011715> ?p ?o ?g. }
- W4377011715 abstract "Patients with end-stage renal disease (ESRD) especially those undergoing dialysis have a high prevalence of hyperkalemia, which must be detected and treated immediately. But the initial symptoms of hyperkalemia are insidious, and traditional laboratory serum potassium concentration testing takes time. Therefore, rapid and real-time measurement of serum potassium is urgently needed. In this study, different machine learning methods were used to make rapid predictions of different degrees of hyperkalemia by analyzing the ECG.A total of 1024 datasets of ECG and serum potassium concentrations were analyzed from December 2020 to December 2021. The data were scaled into training and test sets. Different machine learning models (LR, SVM, CNN, XGB, Adaboost) were built for dichotomous prediction of hyperkalemia by analyzing 48 features of chest leads V2-V5. The performance of the models was also evaluated and compared using sensitivity, specificity, accuracy, accuracy, F1 score and AUC.We constructed different machine models to predict hyperkalemia using LR and four other common machine-learning methods. The AUCs of the different models ranged from 0.740 (0.661, 0.810) to 0.931 (0.912,0.953) when different serum potassium concentrations were used as the diagnostic threshold for hyperkalemia, respectively. As the diagnostic threshold of hyperkalemia was raised, the sensitivity, specificity, accuracy and precision of the model decreased to various degrees. And AUC also performed less well than when predicting mild hyperkalemia.Noninvasive and rapid prediction of hyperkalemia can be achieved by analyzing specific waveforms on the ECG by machine learning methods. But overall, XGB had a higher AUC in mild hyperkalemia, but SVM performed better in predicting more severe hyperkalemia." @default.
- W4377011715 created "2023-05-19" @default.
- W4377011715 creator A5008363264 @default.
- W4377011715 creator A5008713178 @default.
- W4377011715 creator A5010444377 @default.
- W4377011715 creator A5013881064 @default.
- W4377011715 creator A5016098670 @default.
- W4377011715 creator A5020285133 @default.
- W4377011715 creator A5022640003 @default.
- W4377011715 creator A5034164330 @default.
- W4377011715 creator A5041882455 @default.
- W4377011715 creator A5046527141 @default.
- W4377011715 creator A5078867858 @default.
- W4377011715 creator A5090100523 @default.
- W4377011715 creator A5090223238 @default.
- W4377011715 date "2023-05-18" @default.
- W4377011715 modified "2023-10-04" @default.
- W4377011715 title "Prediction of hyperkalemia in ESRD patients by identification of multiple leads and multiple features on ECG" @default.
- W4377011715 cites W1540166912 @default.
- W4377011715 cites W1723129825 @default.
- W4377011715 cites W1988790447 @default.
- W4377011715 cites W2015452969 @default.
- W4377011715 cites W2027764907 @default.
- W4377011715 cites W2059510229 @default.
- W4377011715 cites W2090972718 @default.
- W4377011715 cites W2133371756 @default.
- W4377011715 cites W2147800946 @default.
- W4377011715 cites W2154336683 @default.
- W4377011715 cites W2156635238 @default.
- W4377011715 cites W2157460318 @default.
- W4377011715 cites W2158106388 @default.
- W4377011715 cites W2158648291 @default.
- W4377011715 cites W2167774253 @default.
- W4377011715 cites W2219432653 @default.
- W4377011715 cites W2321232084 @default.
- W4377011715 cites W2355297565 @default.
- W4377011715 cites W2402902975 @default.
- W4377011715 cites W2475261460 @default.
- W4377011715 cites W2519585642 @default.
- W4377011715 cites W2519798224 @default.
- W4377011715 cites W2538039501 @default.
- W4377011715 cites W2596324636 @default.
- W4377011715 cites W2735652746 @default.
- W4377011715 cites W2744929116 @default.
- W4377011715 cites W2770649031 @default.
- W4377011715 cites W2812379429 @default.
- W4377011715 cites W2886522935 @default.
- W4377011715 cites W2891595725 @default.
- W4377011715 cites W2928542791 @default.
- W4377011715 cites W2940879030 @default.
- W4377011715 cites W2946302516 @default.
- W4377011715 cites W2947065165 @default.
- W4377011715 cites W2947249106 @default.
- W4377011715 cites W2979523141 @default.
- W4377011715 cites W2993665959 @default.
- W4377011715 cites W3045415942 @default.
- W4377011715 cites W3094604100 @default.
- W4377011715 cites W3101294892 @default.
- W4377011715 cites W3102476541 @default.
- W4377011715 cites W3111751972 @default.
- W4377011715 cites W3119248677 @default.
- W4377011715 cites W3206611485 @default.
- W4377011715 cites W4308015672 @default.
- W4377011715 cites W4311556566 @default.
- W4377011715 doi "https://doi.org/10.1080/0886022x.2023.2212800" @default.
- W4377011715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37199267" @default.
- W4377011715 hasPublicationYear "2023" @default.
- W4377011715 type Work @default.
- W4377011715 citedByCount "0" @default.
- W4377011715 crossrefType "journal-article" @default.
- W4377011715 hasAuthorship W4377011715A5008363264 @default.
- W4377011715 hasAuthorship W4377011715A5008713178 @default.
- W4377011715 hasAuthorship W4377011715A5010444377 @default.
- W4377011715 hasAuthorship W4377011715A5013881064 @default.
- W4377011715 hasAuthorship W4377011715A5016098670 @default.
- W4377011715 hasAuthorship W4377011715A5020285133 @default.
- W4377011715 hasAuthorship W4377011715A5022640003 @default.
- W4377011715 hasAuthorship W4377011715A5034164330 @default.
- W4377011715 hasAuthorship W4377011715A5041882455 @default.
- W4377011715 hasAuthorship W4377011715A5046527141 @default.
- W4377011715 hasAuthorship W4377011715A5078867858 @default.
- W4377011715 hasAuthorship W4377011715A5090100523 @default.
- W4377011715 hasAuthorship W4377011715A5090223238 @default.
- W4377011715 hasBestOaLocation W43770117151 @default.
- W4377011715 hasConcept C126322002 @default.
- W4377011715 hasConcept C164705383 @default.
- W4377011715 hasConcept C2778653478 @default.
- W4377011715 hasConcept C2780243291 @default.
- W4377011715 hasConcept C71924100 @default.
- W4377011715 hasConceptScore W4377011715C126322002 @default.
- W4377011715 hasConceptScore W4377011715C164705383 @default.
- W4377011715 hasConceptScore W4377011715C2778653478 @default.
- W4377011715 hasConceptScore W4377011715C2780243291 @default.
- W4377011715 hasConceptScore W4377011715C71924100 @default.
- W4377011715 hasFunder F4320319087 @default.
- W4377011715 hasFunder F4320321001 @default.
- W4377011715 hasIssue "1" @default.
- W4377011715 hasLocation W43770117151 @default.
- W4377011715 hasLocation W43770117152 @default.
- W4377011715 hasLocation W43770117153 @default.