Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377012035> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4377012035 abstract "Abstract Hand gesture recognition (HGR) based on electromyography signals (EMGs) and inertial measurement unit signals (IMUs) has been investigated for human-machine applications in the last few years. The information obtained from the HGR systems has the potential to be helpful to control machines such as video games, vehicles, and even robots. Therefore, the key idea of the HGR system is to identify the moment in which a hand gesture was performed and it’s class. Several human-machine state-of-the-art approaches use supervised machine learning (ML) techniques for the HGR system. However, the use of reinforcement learning (RL) approaches to build HGR systems for human-machine interfaces is still an open problem. This work presents a reinforcement learning (RL) approach to classify EMG-IMU signals obtained using a Myo Armband sensor. For this, we create an agent based on the Deep Q-learning algorithm (DQN) to learn a policy from online experiences to classify EMG-IMU signals. The HGR proposed system accuracy reaches up to $$97.45 pm 1.02%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>97.45</mml:mn> <mml:mo>±</mml:mo> <mml:mn>1.02</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> and $$88.05 pm 3.10%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>88.05</mml:mn> <mml:mo>±</mml:mo> <mml:mn>3.10</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> for classification and recognition respectively, with an average inference time per window observation of 20 ms. and we also demonstrate that our method outperforms other approaches in the literature. Then, we test the HGR system to control two different robotic platforms. The first is a three-degrees-of-freedom (DOF) tandem helicopter test bench, and the second is a virtual six-degree-of-freedom (DOF) UR5 robot. We employ the designed hand gesture recognition (HGR) system and the inertial measurement unit (IMU) integrated into the Myo sensor to command and control the motion of both platforms. The movement of the helicopter test bench and the UR5 robot is controlled under a PID controller scheme. Experimental results show the effectiveness of using the proposed HGR system based on DQN for controlling both platforms with a fast and accurate response." @default.
- W4377012035 created "2023-05-19" @default.
- W4377012035 creator A5000056056 @default.
- W4377012035 creator A5014125407 @default.
- W4377012035 creator A5031990578 @default.
- W4377012035 creator A5039873667 @default.
- W4377012035 creator A5041592170 @default.
- W4377012035 creator A5053295712 @default.
- W4377012035 creator A5064145650 @default.
- W4377012035 creator A5001678390 @default.
- W4377012035 date "2023-05-17" @default.
- W4377012035 modified "2023-10-09" @default.
- W4377012035 title "A Deep Q-Network based hand gesture recognition system for control of robotic platforms" @default.
- W4377012035 cites W2003736918 @default.
- W4377012035 cites W2046973819 @default.
- W4377012035 cites W2097117768 @default.
- W4377012035 cites W2106284607 @default.
- W4377012035 cites W2121095571 @default.
- W4377012035 cites W2132294818 @default.
- W4377012035 cites W2145339207 @default.
- W4377012035 cites W2165619603 @default.
- W4377012035 cites W2194775991 @default.
- W4377012035 cites W2485992890 @default.
- W4377012035 cites W2586643027 @default.
- W4377012035 cites W2731190353 @default.
- W4377012035 cites W2746553466 @default.
- W4377012035 cites W2765837440 @default.
- W4377012035 cites W2768087430 @default.
- W4377012035 cites W2782554572 @default.
- W4377012035 cites W2814732882 @default.
- W4377012035 cites W2883943508 @default.
- W4377012035 cites W2888522808 @default.
- W4377012035 cites W2905077259 @default.
- W4377012035 cites W2909124973 @default.
- W4377012035 cites W2919115771 @default.
- W4377012035 cites W2971733775 @default.
- W4377012035 cites W2981327529 @default.
- W4377012035 cites W3015480482 @default.
- W4377012035 cites W3019335159 @default.
- W4377012035 cites W3034703185 @default.
- W4377012035 cites W3035108607 @default.
- W4377012035 cites W3090948038 @default.
- W4377012035 cites W3096136491 @default.
- W4377012035 cites W3110593718 @default.
- W4377012035 cites W3159621146 @default.
- W4377012035 cites W3212359411 @default.
- W4377012035 cites W4225533216 @default.
- W4377012035 doi "https://doi.org/10.1038/s41598-023-34540-x" @default.
- W4377012035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37198179" @default.
- W4377012035 hasPublicationYear "2023" @default.
- W4377012035 type Work @default.
- W4377012035 citedByCount "4" @default.
- W4377012035 countsByYear W43770120352023 @default.
- W4377012035 crossrefType "journal-article" @default.
- W4377012035 hasAuthorship W4377012035A5000056056 @default.
- W4377012035 hasAuthorship W4377012035A5001678390 @default.
- W4377012035 hasAuthorship W4377012035A5014125407 @default.
- W4377012035 hasAuthorship W4377012035A5031990578 @default.
- W4377012035 hasAuthorship W4377012035A5039873667 @default.
- W4377012035 hasAuthorship W4377012035A5041592170 @default.
- W4377012035 hasAuthorship W4377012035A5053295712 @default.
- W4377012035 hasAuthorship W4377012035A5064145650 @default.
- W4377012035 hasBestOaLocation W43770120351 @default.
- W4377012035 hasConcept C11413529 @default.
- W4377012035 hasConcept C119857082 @default.
- W4377012035 hasConcept C154945302 @default.
- W4377012035 hasConcept C41008148 @default.
- W4377012035 hasConcept C97541855 @default.
- W4377012035 hasConceptScore W4377012035C11413529 @default.
- W4377012035 hasConceptScore W4377012035C119857082 @default.
- W4377012035 hasConceptScore W4377012035C154945302 @default.
- W4377012035 hasConceptScore W4377012035C41008148 @default.
- W4377012035 hasConceptScore W4377012035C97541855 @default.
- W4377012035 hasIssue "1" @default.
- W4377012035 hasLocation W43770120351 @default.
- W4377012035 hasLocation W43770120352 @default.
- W4377012035 hasLocation W43770120353 @default.
- W4377012035 hasOpenAccess W4377012035 @default.
- W4377012035 hasPrimaryLocation W43770120351 @default.
- W4377012035 hasRelatedWork W260766989 @default.
- W4377012035 hasRelatedWork W2959276766 @default.
- W4377012035 hasRelatedWork W2961085424 @default.
- W4377012035 hasRelatedWork W3074294383 @default.
- W4377012035 hasRelatedWork W3111983280 @default.
- W4377012035 hasRelatedWork W3139193008 @default.
- W4377012035 hasRelatedWork W4206669594 @default.
- W4377012035 hasRelatedWork W4295941380 @default.
- W4377012035 hasRelatedWork W4306674287 @default.
- W4377012035 hasRelatedWork W4319083788 @default.
- W4377012035 hasVolume "13" @default.
- W4377012035 isParatext "false" @default.
- W4377012035 isRetracted "false" @default.
- W4377012035 workType "article" @default.