Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377012326> ?p ?o ?g. }
- W4377012326 abstract "A large body of work has demonstrated that parameterized artificial neural networks (ANNs) can efficiently describe ground states of numerous interesting quantum many-body Hamiltonians. However, the standard variational algorithms used to update or train the ANN parameters can get trapped in local minima, especially for frustrated systems and even if the representation is sufficiently expressive. We propose a parallel tempering method that facilitates escape from such local minima. This methods involves training multiple ANNs independently, with each simulation governed by a Hamiltonian with a different driver strength, in analogy to quantum parallel tempering, and it incorporates an update step into the training that allows for the exchange of neighboring ANN configurations. We study instances from two classes of Hamiltonians to demonstrate the utility of our approach using Restricted Boltzmann Machines as our parameterized ANN. The first instance is based on a permutation-invariant Hamiltonian whose landscape stymies the standard training algorithm by drawing it increasingly to a false local minimum. The second instance is four hydrogen atoms arranged in a rectangle, which is an instance of the second quantized electronic structure Hamiltonian discretized using Gaussian basis functions. We study this problem in a minimal basis set, which exhibits false minima that can trap the standard variational algorithm despite the problem’s small size. We show that augmenting the training with quantum parallel tempering becomes useful to finding good approximations to the ground states of these problem instances." @default.
- W4377012326 created "2023-05-19" @default.
- W4377012326 creator A5013279300 @default.
- W4377012326 creator A5021331771 @default.
- W4377012326 creator A5058701148 @default.
- W4377012326 creator A5069421291 @default.
- W4377012326 date "2023-05-19" @default.
- W4377012326 modified "2023-09-30" @default.
- W4377012326 title "Quantum-inspired tempering for ground state approximation using artificial neural networks" @default.
- W4377012326 cites W1753190451 @default.
- W4377012326 cites W1833245741 @default.
- W4377012326 cites W1970789124 @default.
- W4377012326 cites W1974511160 @default.
- W4377012326 cites W1977335201 @default.
- W4377012326 cites W1977493031 @default.
- W4377012326 cites W1979695729 @default.
- W4377012326 cites W2004789423 @default.
- W4377012326 cites W2006112609 @default.
- W4377012326 cites W2006787354 @default.
- W4377012326 cites W2013145865 @default.
- W4377012326 cites W2016407890 @default.
- W4377012326 cites W2022338979 @default.
- W4377012326 cites W2027639122 @default.
- W4377012326 cites W2028918948 @default.
- W4377012326 cites W2031157422 @default.
- W4377012326 cites W2031794121 @default.
- W4377012326 cites W2037768897 @default.
- W4377012326 cites W2056760934 @default.
- W4377012326 cites W2060352515 @default.
- W4377012326 cites W2061579329 @default.
- W4377012326 cites W2074426935 @default.
- W4377012326 cites W2079488937 @default.
- W4377012326 cites W2118180752 @default.
- W4377012326 cites W2138309709 @default.
- W4377012326 cites W2146481974 @default.
- W4377012326 cites W2154815292 @default.
- W4377012326 cites W2246554861 @default.
- W4377012326 cites W2419175238 @default.
- W4377012326 cites W2487751811 @default.
- W4377012326 cites W2572590765 @default.
- W4377012326 cites W2750458571 @default.
- W4377012326 cites W2921586812 @default.
- W4377012326 cites W2952627047 @default.
- W4377012326 cites W2953581299 @default.
- W4377012326 cites W2963212486 @default.
- W4377012326 cites W2964121744 @default.
- W4377012326 cites W2975697068 @default.
- W4377012326 cites W2977245197 @default.
- W4377012326 cites W2995786632 @default.
- W4377012326 cites W3028529071 @default.
- W4377012326 cites W3099497510 @default.
- W4377012326 cites W3100332659 @default.
- W4377012326 cites W3101006260 @default.
- W4377012326 cites W3101569812 @default.
- W4377012326 cites W3102069199 @default.
- W4377012326 cites W3103713775 @default.
- W4377012326 cites W3121312972 @default.
- W4377012326 cites W3168595425 @default.
- W4377012326 cites W4254229900 @default.
- W4377012326 cites W4289433382 @default.
- W4377012326 cites W4309201507 @default.
- W4377012326 doi "https://doi.org/10.21468/scipostphys.14.5.121" @default.
- W4377012326 hasPublicationYear "2023" @default.
- W4377012326 type Work @default.
- W4377012326 citedByCount "0" @default.
- W4377012326 crossrefType "journal-article" @default.
- W4377012326 hasAuthorship W4377012326A5013279300 @default.
- W4377012326 hasAuthorship W4377012326A5021331771 @default.
- W4377012326 hasAuthorship W4377012326A5058701148 @default.
- W4377012326 hasAuthorship W4377012326A5069421291 @default.
- W4377012326 hasBestOaLocation W43770123261 @default.
- W4377012326 hasConcept C11413529 @default.
- W4377012326 hasConcept C121332964 @default.
- W4377012326 hasConcept C121864883 @default.
- W4377012326 hasConcept C126255220 @default.
- W4377012326 hasConcept C130787639 @default.
- W4377012326 hasConcept C134306372 @default.
- W4377012326 hasConcept C154945302 @default.
- W4377012326 hasConcept C163716315 @default.
- W4377012326 hasConcept C165464430 @default.
- W4377012326 hasConcept C186633575 @default.
- W4377012326 hasConcept C192576344 @default.
- W4377012326 hasConcept C33923547 @default.
- W4377012326 hasConcept C41008148 @default.
- W4377012326 hasConcept C50644808 @default.
- W4377012326 hasConcept C62520636 @default.
- W4377012326 hasConcept C84114770 @default.
- W4377012326 hasConceptScore W4377012326C11413529 @default.
- W4377012326 hasConceptScore W4377012326C121332964 @default.
- W4377012326 hasConceptScore W4377012326C121864883 @default.
- W4377012326 hasConceptScore W4377012326C126255220 @default.
- W4377012326 hasConceptScore W4377012326C130787639 @default.
- W4377012326 hasConceptScore W4377012326C134306372 @default.
- W4377012326 hasConceptScore W4377012326C154945302 @default.
- W4377012326 hasConceptScore W4377012326C163716315 @default.
- W4377012326 hasConceptScore W4377012326C165464430 @default.
- W4377012326 hasConceptScore W4377012326C186633575 @default.
- W4377012326 hasConceptScore W4377012326C192576344 @default.
- W4377012326 hasConceptScore W4377012326C33923547 @default.
- W4377012326 hasConceptScore W4377012326C41008148 @default.