Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377012709> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4377012709 endingPage "S614" @default.
- W4377012709 startingPage "S614" @default.
- W4377012709 abstract "It remains a challenge to diagnose a paroxysmal episode of atrial fibrillation (AF) as the physician often fails to capture the episode during an instantaneous attack. Several previous trials have demonstrated the need for a more targeted approach to the screening of atrial fibrillation. We aimed to develop an AI-enabled model for early detection and risk stratification of AF using 12-lead electrocardiograms (ECGs) during sinus rhythm. ECGs of patients diagnosed with paroxysmal AF were compared to those without any history of the disease using a deep neural network. Medical records, 12-lead ECGs, or ambulatory ECGs were used to diagnose AF. A proposed risk stratification algorithm of AF diagnoses by AI model divided patients into four groups: (1) low-risk patients (CHA2DS2-VASc 0-1 for male and 0-2 for female) with AI determined AF or not AF (2) high-risk patients (CHA2DS2-VASc 2-8 for male and 3-9 for female) with AI determined AF or not AF. Those patients were further correlated with future cardiovascular and all-cause mortality. A total of 47,892 consecutive patients were retrieved for ECGs with sinus rhythm. Among them, 4121 (8.6%) patients with AF history from 1 January 2009 to 31 December 2017. The area under the curve (AUC) of the AI model in detecting the presence of AF during sinus rhythm was 0.92 (sensitivity: 84.5%, specificity: 86.1%). The Kaplan-Meier curves showed that there was significantly higher mortality (p < 0.001 for cardiovascular [CV] mortality; p < 0.001 for all-cause mortality) in AI determined AF group in high-risk patients but no difference (p = 0.44 for cardiovascular [CV] mortality; p = 0.44 for all-cause mortality) in low-risk patients during six years follow-up (Figure). In another independent test dataset, the AUC of the deep learning model in detecting the presence of AF was 0.82 (sensitivity: 75.5%, specificity: 75.4%). In addition to potentially detecting AF even during sinus rhythm, the AI ECG model is an attractive tool for risk stratification. In the high-risk population, timely identification by the AI model increases the likelihood that adverse outcomes might be reversed." @default.
- W4377012709 created "2023-05-19" @default.
- W4377012709 creator A5002614053 @default.
- W4377012709 creator A5003158130 @default.
- W4377012709 creator A5018201435 @default.
- W4377012709 creator A5020929536 @default.
- W4377012709 creator A5033867132 @default.
- W4377012709 creator A5040766567 @default.
- W4377012709 creator A5050317042 @default.
- W4377012709 creator A5052673069 @default.
- W4377012709 creator A5055256880 @default.
- W4377012709 creator A5061189878 @default.
- W4377012709 creator A5061232078 @default.
- W4377012709 creator A5065172566 @default.
- W4377012709 creator A5068316288 @default.
- W4377012709 creator A5074831686 @default.
- W4377012709 creator A5077716456 @default.
- W4377012709 creator A5078644351 @default.
- W4377012709 creator A5082664244 @default.
- W4377012709 creator A5084571531 @default.
- W4377012709 creator A5086894006 @default.
- W4377012709 date "2023-05-01" @default.
- W4377012709 modified "2023-09-26" @default.
- W4377012709 title "PO-04-183 ARTIFICIAL INTELLIGENCE-ENABLED MODEL FOR EARLY DETECTION OF ATRIAL FIBRILLATION DURING SINUS RHYTHM AND MORTALITY RISK STRATIFICATION" @default.
- W4377012709 doi "https://doi.org/10.1016/j.hrthm.2023.03.1294" @default.
- W4377012709 hasPublicationYear "2023" @default.
- W4377012709 type Work @default.
- W4377012709 citedByCount "0" @default.
- W4377012709 crossrefType "journal-article" @default.
- W4377012709 hasAuthorship W4377012709A5002614053 @default.
- W4377012709 hasAuthorship W4377012709A5003158130 @default.
- W4377012709 hasAuthorship W4377012709A5018201435 @default.
- W4377012709 hasAuthorship W4377012709A5020929536 @default.
- W4377012709 hasAuthorship W4377012709A5033867132 @default.
- W4377012709 hasAuthorship W4377012709A5040766567 @default.
- W4377012709 hasAuthorship W4377012709A5050317042 @default.
- W4377012709 hasAuthorship W4377012709A5052673069 @default.
- W4377012709 hasAuthorship W4377012709A5055256880 @default.
- W4377012709 hasAuthorship W4377012709A5061189878 @default.
- W4377012709 hasAuthorship W4377012709A5061232078 @default.
- W4377012709 hasAuthorship W4377012709A5065172566 @default.
- W4377012709 hasAuthorship W4377012709A5068316288 @default.
- W4377012709 hasAuthorship W4377012709A5074831686 @default.
- W4377012709 hasAuthorship W4377012709A5077716456 @default.
- W4377012709 hasAuthorship W4377012709A5078644351 @default.
- W4377012709 hasAuthorship W4377012709A5082664244 @default.
- W4377012709 hasAuthorship W4377012709A5084571531 @default.
- W4377012709 hasAuthorship W4377012709A5086894006 @default.
- W4377012709 hasBestOaLocation W43770127091 @default.
- W4377012709 hasConcept C126322002 @default.
- W4377012709 hasConcept C164705383 @default.
- W4377012709 hasConcept C2775914520 @default.
- W4377012709 hasConcept C2779161974 @default.
- W4377012709 hasConcept C3020404979 @default.
- W4377012709 hasConcept C35785553 @default.
- W4377012709 hasConcept C71924100 @default.
- W4377012709 hasConcept C76318530 @default.
- W4377012709 hasConceptScore W4377012709C126322002 @default.
- W4377012709 hasConceptScore W4377012709C164705383 @default.
- W4377012709 hasConceptScore W4377012709C2775914520 @default.
- W4377012709 hasConceptScore W4377012709C2779161974 @default.
- W4377012709 hasConceptScore W4377012709C3020404979 @default.
- W4377012709 hasConceptScore W4377012709C35785553 @default.
- W4377012709 hasConceptScore W4377012709C71924100 @default.
- W4377012709 hasConceptScore W4377012709C76318530 @default.
- W4377012709 hasIssue "5" @default.
- W4377012709 hasLocation W43770127091 @default.
- W4377012709 hasOpenAccess W4377012709 @default.
- W4377012709 hasPrimaryLocation W43770127091 @default.
- W4377012709 hasRelatedWork W1973573059 @default.
- W4377012709 hasRelatedWork W1974061424 @default.
- W4377012709 hasRelatedWork W1978291450 @default.
- W4377012709 hasRelatedWork W2006206746 @default.
- W4377012709 hasRelatedWork W2085025615 @default.
- W4377012709 hasRelatedWork W2317055961 @default.
- W4377012709 hasRelatedWork W3104117928 @default.
- W4377012709 hasRelatedWork W3170239004 @default.
- W4377012709 hasRelatedWork W3213905285 @default.
- W4377012709 hasRelatedWork W3215129447 @default.
- W4377012709 hasVolume "20" @default.
- W4377012709 isParatext "false" @default.
- W4377012709 isRetracted "false" @default.
- W4377012709 workType "article" @default.