Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013095> ?p ?o ?g. }
- W4377013095 endingPage "109571" @default.
- W4377013095 startingPage "109571" @default.
- W4377013095 abstract "Laser powder bed fusion (L-PBF) is a promising additive manufacturing (AM) technology for manufacturing complex-shaped metallic parts with high density. Since L-PBF has been rapidly developed and applied in various industries, the quality assurance of the printed part using the process became a topic of primary importance. In this respect, in-situ monitoring techniques have received increased attention in recent years for aiding the quality control of L-PBF process and the certification of the products. This study proposes a novel defect detection framework with a three-dimensional convolutional neural network (3D-CNN) and in-situ monitoring of light intensity for detecting both the lack-of-fusion and keyhole-induced defects. The proposed 3D-CNN model works with a 3D moving window to perform the local inspection using the measured light intensities in three-dimensional space to classify the type of defect. Furthermore, the model predicts the local volume fraction to provide insights into the degree of defect. To perform the classification and regression with a single 3D-CNN, the joint classification and regression approach was adopted to train the model using the results obtained with micro-computed tomography as the ground truth. In order to build the training dataset, the samples with artificial defects were fabricated in different process regimes with energy densities ranging from 19.84J/mm3 to 110.12J/mm3. After the training process, the proposed model was evaluated with the test specimens which contain randomized defects generated due to the excessively low and high energy input. The results showed that the proposed 3D-CNN-based defect detection framework can detect pores greater than 80μm induced by both lack-of-fusion and keyhole mode melting. The sensitivity of the proposed framework was evaluated, showing the true positive rate of 75.69% and 70.47% for lack-of-fusion and keyhole defects with a void volume larger than 0.0003mm3. The prediction of local volume fraction with R2 score of 0.91 was also achieved with the proposed 3D-CNN approach." @default.
- W4377013095 created "2023-05-19" @default.
- W4377013095 creator A5029139071 @default.
- W4377013095 creator A5045397870 @default.
- W4377013095 creator A5056226186 @default.
- W4377013095 date "2023-10-01" @default.
- W4377013095 modified "2023-10-02" @default.
- W4377013095 title "A defect detection framework using three-dimensional convolutional neural network (3D-CNN) with in-situ monitoring data in laser powder bed fusion process" @default.
- W4377013095 cites W1486164486 @default.
- W4377013095 cites W1661604898 @default.
- W4377013095 cites W1977042664 @default.
- W4377013095 cites W1988874269 @default.
- W4377013095 cites W1990077866 @default.
- W4377013095 cites W2002019242 @default.
- W4377013095 cites W2049092283 @default.
- W4377013095 cites W2057193501 @default.
- W4377013095 cites W2069016826 @default.
- W4377013095 cites W2072455331 @default.
- W4377013095 cites W2097615965 @default.
- W4377013095 cites W2127689830 @default.
- W4377013095 cites W2136567909 @default.
- W4377013095 cites W2144354855 @default.
- W4377013095 cites W2147800946 @default.
- W4377013095 cites W2150712551 @default.
- W4377013095 cites W2279780730 @default.
- W4377013095 cites W2408619629 @default.
- W4377013095 cites W2507435465 @default.
- W4377013095 cites W2515609243 @default.
- W4377013095 cites W2532053579 @default.
- W4377013095 cites W2555875178 @default.
- W4377013095 cites W2565656958 @default.
- W4377013095 cites W2607588067 @default.
- W4377013095 cites W2621400967 @default.
- W4377013095 cites W2743884968 @default.
- W4377013095 cites W2770960491 @default.
- W4377013095 cites W2772940940 @default.
- W4377013095 cites W2777965033 @default.
- W4377013095 cites W2797634838 @default.
- W4377013095 cites W2803999279 @default.
- W4377013095 cites W2809254203 @default.
- W4377013095 cites W2889669663 @default.
- W4377013095 cites W2899133278 @default.
- W4377013095 cites W2901057844 @default.
- W4377013095 cites W2901260757 @default.
- W4377013095 cites W2905104026 @default.
- W4377013095 cites W2914540228 @default.
- W4377013095 cites W2919115771 @default.
- W4377013095 cites W2940475710 @default.
- W4377013095 cites W2944347194 @default.
- W4377013095 cites W2960317155 @default.
- W4377013095 cites W2962940229 @default.
- W4377013095 cites W2967636674 @default.
- W4377013095 cites W2982210492 @default.
- W4377013095 cites W2982488222 @default.
- W4377013095 cites W2990451840 @default.
- W4377013095 cites W3023177958 @default.
- W4377013095 cites W3027775195 @default.
- W4377013095 cites W3034540853 @default.
- W4377013095 cites W3047347981 @default.
- W4377013095 cites W3080402790 @default.
- W4377013095 cites W3099119976 @default.
- W4377013095 cites W3177792861 @default.
- W4377013095 cites W3202767637 @default.
- W4377013095 cites W4205420803 @default.
- W4377013095 doi "https://doi.org/10.1016/j.optlastec.2023.109571" @default.
- W4377013095 hasPublicationYear "2023" @default.
- W4377013095 type Work @default.
- W4377013095 citedByCount "1" @default.
- W4377013095 countsByYear W43770130952023 @default.
- W4377013095 crossrefType "journal-article" @default.
- W4377013095 hasAuthorship W4377013095A5029139071 @default.
- W4377013095 hasAuthorship W4377013095A5045397870 @default.
- W4377013095 hasAuthorship W4377013095A5056226186 @default.
- W4377013095 hasConcept C106436119 @default.
- W4377013095 hasConcept C111919701 @default.
- W4377013095 hasConcept C136264566 @default.
- W4377013095 hasConcept C146849305 @default.
- W4377013095 hasConcept C153180895 @default.
- W4377013095 hasConcept C154945302 @default.
- W4377013095 hasConcept C162324750 @default.
- W4377013095 hasConcept C192562407 @default.
- W4377013095 hasConcept C2777441419 @default.
- W4377013095 hasConcept C2780378061 @default.
- W4377013095 hasConcept C41008148 @default.
- W4377013095 hasConcept C50644808 @default.
- W4377013095 hasConcept C81363708 @default.
- W4377013095 hasConcept C98045186 @default.
- W4377013095 hasConceptScore W4377013095C106436119 @default.
- W4377013095 hasConceptScore W4377013095C111919701 @default.
- W4377013095 hasConceptScore W4377013095C136264566 @default.
- W4377013095 hasConceptScore W4377013095C146849305 @default.
- W4377013095 hasConceptScore W4377013095C153180895 @default.
- W4377013095 hasConceptScore W4377013095C154945302 @default.
- W4377013095 hasConceptScore W4377013095C162324750 @default.
- W4377013095 hasConceptScore W4377013095C192562407 @default.
- W4377013095 hasConceptScore W4377013095C2777441419 @default.
- W4377013095 hasConceptScore W4377013095C2780378061 @default.
- W4377013095 hasConceptScore W4377013095C41008148 @default.