Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013301> ?p ?o ?g. }
- W4377013301 endingPage "e335" @default.
- W4377013301 startingPage "e324" @default.
- W4377013301 abstract "Background and Objectives A new frontier in diagnostic radiology is the inclusion of machine-assisted support tools that facilitate the identification of subtle lesions often not visible to the human eye. Structural neuroimaging plays an essential role in the identification of lesions in patients with epilepsy, which often coincide with the seizure focus. In this study, we explored the potential for a convolutional neural network (CNN) to determine lateralization of seizure onset in patients with epilepsy using T1-weighted structural MRI scans as input. Methods Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers, we tested whether a CNN based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and a hippocampal volume logistic regression (comparison with current clinically available measures). Furthermore, we leveraged a CNN feature visualization technique to identify regions used to classify patients. Results Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance. The CNN outperformed the randomized model (average concordance of 51.7%) on 100% of runs with an average improvement of 26.2% and outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%. Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. Discussion These extratemporal lobe features underscore the importance of whole-brain models to highlight areas worthy of clinician scrutiny during temporal lobe epilepsy lateralization. This proof-of-concept study illustrates that a CNN applied to structural MRI data can visually aid clinician-led localization of epileptogenic zone and identify extrahippocampal regions that may require additional radiologic attention. Classification of Evidence This study provides Class II evidence that in patients with drug-resistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality." @default.
- W4377013301 created "2023-05-19" @default.
- W4377013301 creator A5005755344 @default.
- W4377013301 creator A5014638692 @default.
- W4377013301 creator A5025843483 @default.
- W4377013301 creator A5030077661 @default.
- W4377013301 creator A5040928549 @default.
- W4377013301 creator A5042079614 @default.
- W4377013301 creator A5047700419 @default.
- W4377013301 creator A5051033644 @default.
- W4377013301 creator A5057765347 @default.
- W4377013301 creator A5067569321 @default.
- W4377013301 creator A5070078632 @default.
- W4377013301 creator A5074010558 @default.
- W4377013301 creator A5091217168 @default.
- W4377013301 date "2023-05-18" @default.
- W4377013301 modified "2023-10-12" @default.
- W4377013301 title "Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy" @default.
- W4377013301 cites W1499374332 @default.
- W4377013301 cites W1528314503 @default.
- W4377013301 cites W1984106334 @default.
- W4377013301 cites W2006301347 @default.
- W4377013301 cites W2009691024 @default.
- W4377013301 cites W2016599396 @default.
- W4377013301 cites W2024865093 @default.
- W4377013301 cites W2041216092 @default.
- W4377013301 cites W2042517808 @default.
- W4377013301 cites W2045549224 @default.
- W4377013301 cites W2049348114 @default.
- W4377013301 cites W2076871465 @default.
- W4377013301 cites W2078396110 @default.
- W4377013301 cites W2078690270 @default.
- W4377013301 cites W2080211545 @default.
- W4377013301 cites W2090991191 @default.
- W4377013301 cites W2099295649 @default.
- W4377013301 cites W2112171506 @default.
- W4377013301 cites W2113097895 @default.
- W4377013301 cites W2126013588 @default.
- W4377013301 cites W2134273344 @default.
- W4377013301 cites W2134785535 @default.
- W4377013301 cites W2145664048 @default.
- W4377013301 cites W2158294440 @default.
- W4377013301 cites W2594644573 @default.
- W4377013301 cites W2598441763 @default.
- W4377013301 cites W2790265810 @default.
- W4377013301 cites W2793978211 @default.
- W4377013301 cites W2810349670 @default.
- W4377013301 cites W2916415046 @default.
- W4377013301 cites W2955578722 @default.
- W4377013301 cites W2962858109 @default.
- W4377013301 cites W2984554569 @default.
- W4377013301 cites W2998311683 @default.
- W4377013301 cites W3000130428 @default.
- W4377013301 cites W3013532130 @default.
- W4377013301 cites W3030988535 @default.
- W4377013301 cites W3081310575 @default.
- W4377013301 cites W3094647127 @default.
- W4377013301 cites W3111406574 @default.
- W4377013301 cites W3128482535 @default.
- W4377013301 cites W3176363315 @default.
- W4377013301 cites W3186467883 @default.
- W4377013301 cites W3196732243 @default.
- W4377013301 cites W3216069995 @default.
- W4377013301 cites W4206587798 @default.
- W4377013301 cites W4206712638 @default.
- W4377013301 cites W4220699890 @default.
- W4377013301 cites W4226068623 @default.
- W4377013301 cites W4226115617 @default.
- W4377013301 cites W2503572981 @default.
- W4377013301 doi "https://doi.org/10.1212/wnl.0000000000207411" @default.
- W4377013301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37202160" @default.
- W4377013301 hasPublicationYear "2023" @default.
- W4377013301 type Work @default.
- W4377013301 citedByCount "1" @default.
- W4377013301 crossrefType "journal-article" @default.
- W4377013301 hasAuthorship W4377013301A5005755344 @default.
- W4377013301 hasAuthorship W4377013301A5014638692 @default.
- W4377013301 hasAuthorship W4377013301A5025843483 @default.
- W4377013301 hasAuthorship W4377013301A5030077661 @default.
- W4377013301 hasAuthorship W4377013301A5040928549 @default.
- W4377013301 hasAuthorship W4377013301A5042079614 @default.
- W4377013301 hasAuthorship W4377013301A5047700419 @default.
- W4377013301 hasAuthorship W4377013301A5051033644 @default.
- W4377013301 hasAuthorship W4377013301A5057765347 @default.
- W4377013301 hasAuthorship W4377013301A5067569321 @default.
- W4377013301 hasAuthorship W4377013301A5070078632 @default.
- W4377013301 hasAuthorship W4377013301A5074010558 @default.
- W4377013301 hasAuthorship W4377013301A5091217168 @default.
- W4377013301 hasConcept C126322002 @default.
- W4377013301 hasConcept C153180895 @default.
- W4377013301 hasConcept C154945302 @default.
- W4377013301 hasConcept C15744967 @default.
- W4377013301 hasConcept C160798450 @default.
- W4377013301 hasConcept C169760540 @default.
- W4377013301 hasConcept C2777597344 @default.
- W4377013301 hasConcept C2778186239 @default.
- W4377013301 hasConcept C2780803581 @default.
- W4377013301 hasConcept C2781099131 @default.