Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013392> ?p ?o ?g. }
- W4377013392 endingPage "135010" @default.
- W4377013392 startingPage "135010" @default.
- W4377013392 abstract "Abstract Relativistic cosmology can be formulated covariantly, but in dealing with numerical relativity simulations a gauge choice is necessary. Although observables should be gauge-invariant, simulations do not necessarily focus on their computations, while it is useful to extract results invariantly. To this end, in order to invariantly characterize spacetimes resulting from cosmological simulations, we present two different methodologies to compute the electric and magnetic parts of the Weyl tensor, <?CDATA $E_{alphabeta}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:msub> </mml:math> and <?CDATA $B_{alphabeta}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:msub> </mml:math> , from which we construct scalar invariants and the Weyl scalars. The first method is geometrical, computing these tensors in full from the metric, and the second uses the 3 + 1 slicing formulation. We developed a code for each method and tested them on five analytic metrics, for which we derived <?CDATA $E_{alphabeta}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:msub> </mml:math> and <?CDATA $B_{alphabeta}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:msub> </mml:math> and the various scalars constructed from them with computer algebra software. We find excellent agreement between the analytic and numerical results. The slicing code outperforms the geometrical code for computational convenience and accuracy; on this basis we make it publicly available in github with the name EBWeyl. We emphasize that this post-processing code is applicable to any numerical spacetime in any gauge." @default.
- W4377013392 created "2023-05-19" @default.
- W4377013392 creator A5013437955 @default.
- W4377013392 creator A5047891223 @default.
- W4377013392 date "2023-06-07" @default.
- W4377013392 modified "2023-10-01" @default.
- W4377013392 title "EBWeyl: a code to invariantly characterize numerical spacetimes" @default.
- W4377013392 cites W1572803352 @default.
- W4377013392 cites W1598979961 @default.
- W4377013392 cites W1648966538 @default.
- W4377013392 cites W1672567965 @default.
- W4377013392 cites W1798236575 @default.
- W4377013392 cites W1880687005 @default.
- W4377013392 cites W1899158244 @default.
- W4377013392 cites W1964673647 @default.
- W4377013392 cites W1967656590 @default.
- W4377013392 cites W1968424388 @default.
- W4377013392 cites W1970859624 @default.
- W4377013392 cites W1971437565 @default.
- W4377013392 cites W1972326937 @default.
- W4377013392 cites W1973018404 @default.
- W4377013392 cites W1973259777 @default.
- W4377013392 cites W1973687841 @default.
- W4377013392 cites W1975547920 @default.
- W4377013392 cites W1976944354 @default.
- W4377013392 cites W1977479712 @default.
- W4377013392 cites W1978381079 @default.
- W4377013392 cites W1985370812 @default.
- W4377013392 cites W1987166016 @default.
- W4377013392 cites W1987737021 @default.
- W4377013392 cites W1990669969 @default.
- W4377013392 cites W1994063209 @default.
- W4377013392 cites W1994472084 @default.
- W4377013392 cites W1995413570 @default.
- W4377013392 cites W1996002771 @default.
- W4377013392 cites W1996045664 @default.
- W4377013392 cites W2004023389 @default.
- W4377013392 cites W2006620446 @default.
- W4377013392 cites W2010335523 @default.
- W4377013392 cites W2010567060 @default.
- W4377013392 cites W2011077420 @default.
- W4377013392 cites W2013986329 @default.
- W4377013392 cites W2014834764 @default.
- W4377013392 cites W2023724948 @default.
- W4377013392 cites W2025996615 @default.
- W4377013392 cites W2026394947 @default.
- W4377013392 cites W2028483511 @default.
- W4377013392 cites W2030416357 @default.
- W4377013392 cites W2033196862 @default.
- W4377013392 cites W2034486725 @default.
- W4377013392 cites W2037188263 @default.
- W4377013392 cites W2038089768 @default.
- W4377013392 cites W2039165171 @default.
- W4377013392 cites W2039752634 @default.
- W4377013392 cites W2040216147 @default.
- W4377013392 cites W2041089724 @default.
- W4377013392 cites W2044626061 @default.
- W4377013392 cites W2044629718 @default.
- W4377013392 cites W2044983500 @default.
- W4377013392 cites W2047612186 @default.
- W4377013392 cites W2048766228 @default.
- W4377013392 cites W2059342029 @default.
- W4377013392 cites W2061835457 @default.
- W4377013392 cites W2062892568 @default.
- W4377013392 cites W2067142646 @default.
- W4377013392 cites W2069480827 @default.
- W4377013392 cites W2069592886 @default.
- W4377013392 cites W2072294207 @default.
- W4377013392 cites W2080272424 @default.
- W4377013392 cites W2081372613 @default.
- W4377013392 cites W2084459198 @default.
- W4377013392 cites W2085617494 @default.
- W4377013392 cites W2086531561 @default.
- W4377013392 cites W2088448937 @default.
- W4377013392 cites W2090497620 @default.
- W4377013392 cites W2091336991 @default.
- W4377013392 cites W2099263196 @default.
- W4377013392 cites W2101148985 @default.
- W4377013392 cites W2113513599 @default.
- W4377013392 cites W2120058839 @default.
- W4377013392 cites W2130939712 @default.
- W4377013392 cites W2132717614 @default.
- W4377013392 cites W2140486468 @default.
- W4377013392 cites W2145169159 @default.
- W4377013392 cites W2153323513 @default.
- W4377013392 cites W2153325244 @default.
- W4377013392 cites W2168670132 @default.
- W4377013392 cites W2169912865 @default.
- W4377013392 cites W2248514403 @default.
- W4377013392 cites W2253332698 @default.
- W4377013392 cites W2314299801 @default.
- W4377013392 cites W2336337957 @default.
- W4377013392 cites W2541054484 @default.
- W4377013392 cites W2592256480 @default.
- W4377013392 cites W2769275924 @default.
- W4377013392 cites W2783246754 @default.
- W4377013392 cites W2803260986 @default.
- W4377013392 cites W2804749016 @default.