Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013567> ?p ?o ?g. }
- W4377013567 endingPage "125002" @default.
- W4377013567 startingPage "125002" @default.
- W4377013567 abstract "Objective. Many methods for compression and/or de-speckling of 3D optical coherence tomography (OCT) images operate on a slice-by-slice basis and, consequently, ignore spatial relations between the B-scans. Thus, we develop compression ratio (CR)-constrained low tensor train (TT)-and low multilinear (ML) rank approximations of 3D tensors for compression and de-speckling of 3D OCT images. Due to inherent denoising mechanism of low-rank approximation, compressed image is often even of better quality than the raw image it is based on.Approach. We formulate CR-constrained low rank approximations of 3D tensor as parallel non-convex non-smooth optimization problems implemented by alternating direction method of multipliers of unfolded tensors. In contrast to patch- and sparsity-based OCT image compression methods, proposed approach does not require clean images for dictionary learning, enables CR as high as 60:1, and it is fast. In contrast to deep networks based OCT image compression, proposed approach is training free and does not require any supervised data pre-processing.Main results. Proposed methodology is evaluated on twenty four images of a retina acquired on Topcon 3D OCT-1000 scanner, and twenty images of a retina acquired on Big Vision BV1000 3D OCT scanner. For the first dataset, statistical significance analysis shows that for CR ≤ 35, all low ML rank approximations and Schatten-0 (S0) norm constrained low TT rank approximation can be useful for machine learning-based diagnostics by using segmented retina layers. Also for CR ≤ 35,S0-constrained ML rank approximation andS0-constrained low TT rank approximation can be useful for visual inspection-based diagnostics. For the second dataset, statistical significance analysis shows that for CR ≤ 60 all low ML rank approximations as well asS0andS1/2low TT ranks approximations can be useful for machine learning-based diagnostics by using segmented retina layers. Also, for CR ≤ 60, low ML rank approximations constrained withSp,p∊ {0, 1/2, 2/3} and one surrogate ofS0can be useful for visual inspection-based diagnostics. That is also true for low TT rank approximations constrained withSp,p∊ {0, 1/2, 2/3} for CR ≤ 20.Significance. Studies conducted on datasets acquired by two different types of scanners confirmed capabilities of proposed framework that, for a wide range of CRs, yields de-speckled 3D OCT images suitable for clinical data archiving and remote consultation, for visual inspection-based diagnosis and for machine learning-based diagnosis by using segmented retina layers." @default.
- W4377013567 created "2023-05-19" @default.
- W4377013567 creator A5014814200 @default.
- W4377013567 creator A5029842239 @default.
- W4377013567 creator A5048091475 @default.
- W4377013567 creator A5057572272 @default.
- W4377013567 creator A5064824381 @default.
- W4377013567 creator A5080677566 @default.
- W4377013567 date "2023-06-08" @default.
- W4377013567 modified "2023-10-16" @default.
- W4377013567 title "Low tensor train and low multilinear rank approximations of 3D tensors for compression and de-speckling of optical coherence tomography images" @default.
- W4377013567 cites W1565566802 @default.
- W4377013567 cites W1963826206 @default.
- W4377013567 cites W1969370809 @default.
- W4377013567 cites W1971940759 @default.
- W4377013567 cites W1993482030 @default.
- W4377013567 cites W1994147931 @default.
- W4377013567 cites W2007720984 @default.
- W4377013567 cites W2029735695 @default.
- W4377013567 cites W2031614119 @default.
- W4377013567 cites W2040747879 @default.
- W4377013567 cites W2040903332 @default.
- W4377013567 cites W2061240737 @default.
- W4377013567 cites W2072086181 @default.
- W4377013567 cites W2092474544 @default.
- W4377013567 cites W2099563019 @default.
- W4377013567 cites W2108304270 @default.
- W4377013567 cites W2140235836 @default.
- W4377013567 cites W2142276208 @default.
- W4377013567 cites W2155800473 @default.
- W4377013567 cites W2160269836 @default.
- W4377013567 cites W2163398148 @default.
- W4377013567 cites W2169119609 @default.
- W4377013567 cites W2338570568 @default.
- W4377013567 cites W2418802570 @default.
- W4377013567 cites W2504874736 @default.
- W4377013567 cites W2523513766 @default.
- W4377013567 cites W2593392256 @default.
- W4377013567 cites W2741826584 @default.
- W4377013567 cites W2773475231 @default.
- W4377013567 cites W2791702886 @default.
- W4377013567 cites W2894857791 @default.
- W4377013567 cites W2899861477 @default.
- W4377013567 cites W2962976869 @default.
- W4377013567 cites W3033958560 @default.
- W4377013567 cites W3121054072 @default.
- W4377013567 cites W3155794344 @default.
- W4377013567 cites W4292363360 @default.
- W4377013567 doi "https://doi.org/10.1088/1361-6560/acd6d1" @default.
- W4377013567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37201537" @default.
- W4377013567 hasPublicationYear "2023" @default.
- W4377013567 type Work @default.
- W4377013567 citedByCount "0" @default.
- W4377013567 crossrefType "journal-article" @default.
- W4377013567 hasAuthorship W4377013567A5014814200 @default.
- W4377013567 hasAuthorship W4377013567A5029842239 @default.
- W4377013567 hasAuthorship W4377013567A5048091475 @default.
- W4377013567 hasAuthorship W4377013567A5057572272 @default.
- W4377013567 hasAuthorship W4377013567A5064824381 @default.
- W4377013567 hasAuthorship W4377013567A5080677566 @default.
- W4377013567 hasConcept C11413529 @default.
- W4377013567 hasConcept C114614502 @default.
- W4377013567 hasConcept C115961682 @default.
- W4377013567 hasConcept C120665830 @default.
- W4377013567 hasConcept C121332964 @default.
- W4377013567 hasConcept C13481523 @default.
- W4377013567 hasConcept C154945302 @default.
- W4377013567 hasConcept C155281189 @default.
- W4377013567 hasConcept C164226766 @default.
- W4377013567 hasConcept C202444582 @default.
- W4377013567 hasConcept C2524010 @default.
- W4377013567 hasConcept C2778818243 @default.
- W4377013567 hasConcept C31972630 @default.
- W4377013567 hasConcept C33923547 @default.
- W4377013567 hasConcept C41008148 @default.
- W4377013567 hasConcept C84392682 @default.
- W4377013567 hasConcept C9417928 @default.
- W4377013567 hasConcept C99498987 @default.
- W4377013567 hasConceptScore W4377013567C11413529 @default.
- W4377013567 hasConceptScore W4377013567C114614502 @default.
- W4377013567 hasConceptScore W4377013567C115961682 @default.
- W4377013567 hasConceptScore W4377013567C120665830 @default.
- W4377013567 hasConceptScore W4377013567C121332964 @default.
- W4377013567 hasConceptScore W4377013567C13481523 @default.
- W4377013567 hasConceptScore W4377013567C154945302 @default.
- W4377013567 hasConceptScore W4377013567C155281189 @default.
- W4377013567 hasConceptScore W4377013567C164226766 @default.
- W4377013567 hasConceptScore W4377013567C202444582 @default.
- W4377013567 hasConceptScore W4377013567C2524010 @default.
- W4377013567 hasConceptScore W4377013567C2778818243 @default.
- W4377013567 hasConceptScore W4377013567C31972630 @default.
- W4377013567 hasConceptScore W4377013567C33923547 @default.
- W4377013567 hasConceptScore W4377013567C41008148 @default.
- W4377013567 hasConceptScore W4377013567C84392682 @default.
- W4377013567 hasConceptScore W4377013567C9417928 @default.
- W4377013567 hasConceptScore W4377013567C99498987 @default.
- W4377013567 hasFunder F4320322674 @default.
- W4377013567 hasFunder F4320335322 @default.