Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013603> ?p ?o ?g. }
- W4377013603 abstract "Abstract Objective Intracranial pressure (ICP) is a physiological variable used to assess the neurological state of patients with life-threatening intracranial pathology, such as traumatic brain injury or stroke. The current standard of care for measuring ICP requires a catheter to be inserted into the brain, which is associated with an appreciable risk of hemorrhage and infection. We hypothesize that ICP can be computed from extracranial waveforms routinely measured in the Intensive Care Unit (ICU), such as invasive arterial blood pressure (ABP), photoplethysmography (PPG), and electrocardiography (ECG). Methods We extracted 600 hours of simultaneous ABP, ECG, PPG, and ICP data (sampled at 125 Hz) across 10 different patients from the MIMIC III Waveform Database. These recordings were segmented into 10 second windows and used to train six different deep learning models with ABP, ECG, and PPG waveforms as input features. Models were evaluated in both a singlepatient analysis and multi-patient analysis. Results The performances of the six deep learning models were compared, revealing two tiers of performance. Among the top-tier models, the mean average error (MAE) for inferring ICP was approximately 1.50 mmHg for singlepatient analysis and 5 mmHg for multi-patient analysis. Conclusions These preliminary and novel results indicate the feasibility and accuracy of noninvasive ICP estimation by training deep learning models with extracranial physiological data. With further validation, this approach could be implemented in a continuous real-time fashion, thereby reducing risks associated with invasive monitoring and allowing more timely treatment of patients with critical brain injuries." @default.
- W4377013603 created "2023-05-19" @default.
- W4377013603 creator A5009363580 @default.
- W4377013603 creator A5030462513 @default.
- W4377013603 creator A5032502985 @default.
- W4377013603 creator A5032688063 @default.
- W4377013603 creator A5034238598 @default.
- W4377013603 creator A5059431116 @default.
- W4377013603 creator A5078480890 @default.
- W4377013603 creator A5091971361 @default.
- W4377013603 creator A5091971362 @default.
- W4377013603 date "2023-05-18" @default.
- W4377013603 modified "2023-10-16" @default.
- W4377013603 title "A Real-Time Deep Learning Approach for Inferring Intracranial Pressure from Routinely Measured Extracranial Waveforms in the Intensive Care Unit" @default.
- W4377013603 cites W1984580487 @default.
- W4377013603 cites W1986686551 @default.
- W4377013603 cites W2017263726 @default.
- W4377013603 cites W2094154098 @default.
- W4377013603 cites W2102982278 @default.
- W4377013603 cites W2117439152 @default.
- W4377013603 cites W2290983615 @default.
- W4377013603 cites W2386177419 @default.
- W4377013603 cites W2396881363 @default.
- W4377013603 cites W2549628633 @default.
- W4377013603 cites W2562850715 @default.
- W4377013603 cites W2595085771 @default.
- W4377013603 cites W2612192108 @default.
- W4377013603 cites W2805151428 @default.
- W4377013603 cites W3006301605 @default.
- W4377013603 cites W3023689466 @default.
- W4377013603 cites W3047855151 @default.
- W4377013603 cites W3097056170 @default.
- W4377013603 cites W3165313538 @default.
- W4377013603 cites W3171454251 @default.
- W4377013603 cites W3174290991 @default.
- W4377013603 cites W3192502370 @default.
- W4377013603 cites W4210823941 @default.
- W4377013603 cites W4221022811 @default.
- W4377013603 cites W4224440084 @default.
- W4377013603 cites W4281744157 @default.
- W4377013603 cites W4285079351 @default.
- W4377013603 cites W4295845644 @default.
- W4377013603 cites W4310490169 @default.
- W4377013603 cites W4313260873 @default.
- W4377013603 cites W4313409774 @default.
- W4377013603 cites W4318450237 @default.
- W4377013603 cites W4327615174 @default.
- W4377013603 cites W4360585281 @default.
- W4377013603 cites W4366464284 @default.
- W4377013603 cites W4376642434 @default.
- W4377013603 cites W1973806195 @default.
- W4377013603 doi "https://doi.org/10.1101/2023.05.16.23289747" @default.
- W4377013603 hasPublicationYear "2023" @default.
- W4377013603 type Work @default.
- W4377013603 citedByCount "0" @default.
- W4377013603 crossrefType "posted-content" @default.
- W4377013603 hasAuthorship W4377013603A5009363580 @default.
- W4377013603 hasAuthorship W4377013603A5030462513 @default.
- W4377013603 hasAuthorship W4377013603A5032502985 @default.
- W4377013603 hasAuthorship W4377013603A5032688063 @default.
- W4377013603 hasAuthorship W4377013603A5034238598 @default.
- W4377013603 hasAuthorship W4377013603A5059431116 @default.
- W4377013603 hasAuthorship W4377013603A5078480890 @default.
- W4377013603 hasAuthorship W4377013603A5091971361 @default.
- W4377013603 hasAuthorship W4377013603A5091971362 @default.
- W4377013603 hasBestOaLocation W43770136031 @default.
- W4377013603 hasConcept C106131492 @default.
- W4377013603 hasConcept C108583219 @default.
- W4377013603 hasConcept C116390426 @default.
- W4377013603 hasConcept C118552586 @default.
- W4377013603 hasConcept C126322002 @default.
- W4377013603 hasConcept C127413603 @default.
- W4377013603 hasConcept C154945302 @default.
- W4377013603 hasConcept C177713679 @default.
- W4377013603 hasConcept C197424946 @default.
- W4377013603 hasConcept C2776376669 @default.
- W4377013603 hasConcept C2780645631 @default.
- W4377013603 hasConcept C2780954326 @default.
- W4377013603 hasConcept C2781017439 @default.
- W4377013603 hasConcept C2987404301 @default.
- W4377013603 hasConcept C31972630 @default.
- W4377013603 hasConcept C41008148 @default.
- W4377013603 hasConcept C42219234 @default.
- W4377013603 hasConcept C554190296 @default.
- W4377013603 hasConcept C71924100 @default.
- W4377013603 hasConcept C76155785 @default.
- W4377013603 hasConcept C78519656 @default.
- W4377013603 hasConcept C84393581 @default.
- W4377013603 hasConceptScore W4377013603C106131492 @default.
- W4377013603 hasConceptScore W4377013603C108583219 @default.
- W4377013603 hasConceptScore W4377013603C116390426 @default.
- W4377013603 hasConceptScore W4377013603C118552586 @default.
- W4377013603 hasConceptScore W4377013603C126322002 @default.
- W4377013603 hasConceptScore W4377013603C127413603 @default.
- W4377013603 hasConceptScore W4377013603C154945302 @default.
- W4377013603 hasConceptScore W4377013603C177713679 @default.
- W4377013603 hasConceptScore W4377013603C197424946 @default.
- W4377013603 hasConceptScore W4377013603C2776376669 @default.
- W4377013603 hasConceptScore W4377013603C2780645631 @default.
- W4377013603 hasConceptScore W4377013603C2780954326 @default.